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Abstract— Convolutional Neural Network (CNN) have been
widely used in image classification. Over the years, they have also
benefited from various enhancements and they are now considered
as state of the art techniques for image like data. However, when
they are used for regression to estimate some function value from
images, fewer recommendations are available. In this study, a
novel CNN regression model is proposed. It combines convolutional
neural layers to extract high level features representations from
images with a soft labelling technique that helps generalization
performance. More specifically, as the deep regression task is
challenging, the idea is to account for some uncertainty in the targets
that are seen as distributions around their mean. The estimations
are carried out by the model in the form of distributions. Building
from earlier work [1], a specific histogram loss function based on
the Kullback-Leibler (KL) divergence is applied during training.
The model takes advantage of the CNN feature representation and
is able to carry out estimation from multi-channel input images. To
assess and illustrate the technique, the model is applied to Global
Navigation Satellite System (GNSS) multi-path estimation where
multi-path signal parameters have to be estimated from correlator
output images from the I and Q channels. The multi-path signal
delay, magnitude, Doppler shift frequency and phase parameters are
estimated from synthetically generated datasets of satellite signals.
Experiments are conducted under various receiving conditions and
various input images resolutions to test the estimation performances
quality and robustness. The results show that the proposed soft
labelling CNN technique using distributional loss outperforms
classical CNN regression under all conditions. Furthermore, the
extra learning performance achieved by the model allows the
reduction of input image resolution from 80x80 down to 40x40
or sometimes 20x20.
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I. Introduction

There has been a growing interest for CNN [2] in
the machine learning community in order to construct
high level features from images. Mostly used in images
classification, CNN have also been employed to estimate
various information from images. Building regression
models from image data is a difficult task since complex
and high level feature representation is needed. This is
why deep architectures are usually considered. Among
the traditional examples from the literature, one can refer
to [3], [4], [5] and [6] where holistic reasoning on Human
pose estimation is based on CNN. Age estimation accord-
ing to face images [7] or magnetic resonance images [8]
are other successful examples of regression with CNN.
They were also applied on X-ray tensor images in [9] and
recently, in [10], the authors have proposed an extensive
review of CNN for regressions. To increase the regression
model generalization performance, it has been shown that
the use of soft labelling techniques can greatly help [1],
[11]. Among soft labelling techniques, one idea is to
consider that labels used during training are uncertain and
drawn from a given distribution. Training can therefore
be carried out at the distribution level rather than single
observations. Especially suited when labels are ambiguous
or subject to noise, this procedure can also be seen, in
the general regression task, as a robustness enforcing
alternative to other strategies such as batch normalization
[12], dropout [13], early stopping [14] or regularization
[2], [15], [16] most often used in classification problems.

In this study, we propose a new CNN regression model
that implements distributional loss on GNSS multi-path
data. The objective is to estimate multi-path parameters
from two dimensional GNSS correlation images.

A multi-path is a parasitic reflection of the signal
of interest which contaminates it at the very beginning
of the receiving chain, the antenna. In the specific case
of GNSS receivers, multi-paths remain one of the most
difficult disturbance to mitigate. Indeed, as the multi-
path is of the same nature as the signal of interest
it could be barely discernible from it. This similarity
between the original signal and its disruptive replica
can induce a large positioning error [17]. This problem
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explains the large number of research activities which
have been led on multi-path detection, estimation and
mitigation. Conventional signal processing methods have
been extensively studied. In the statistical approach, the
narrow correlator technique [18], the early-late-slope tech-
nique [19], the strobe correlator [20], the double-delta
correlator [21] and the multi-path intensive delay lock
loop [22] methods have raised the interest of the GNSS
community, mainly for their simplicity despite their mixed
efficiency. The Bayesian strategy was also explored, the
Multipath Estimating Delay Lock Loop (MEDLL) re-
maining for years the reference implementation of the
maximum likelihood principle [23]. However, the applica-
tion of particle filtering to multi-path mitigation presented
recently in [24] makes up for error accumulation of
the MEDLL algorithm, at the expense of a significantly
higher computational complexity. It is worth noting that
if the aforementioned methods are predominantly time-
based, some research works have also investigated the fre-
quency domain, through the Fourier transform [25] or the
wavelet decomposition [26]. Nevertheless, these methods
may damage the signal of interest, particularly in cases
where the spectrum of the multi-path is too close from
the one of the direct path. The use of Machine Learning
(ML) techniques to mitigate the errors in GNSS signals
has gained some interest in the early 2000s. A Multi-
Layer Perceptron (MLP) architecture designed to mitigate
multi-path error for Low Earth Orbit (LEO) satellites has
been detailed in [27] for example. More recently, taking
advantage of the progress in kernel methods, [28] pro-
posed a support vector regressor using signal geometrical
features to mitigate multi-path on ground fixed Global
Positioning System (GPS) stations. Still with Support
Vector Machines (SVM), [29] has conducted multi-path
detection using high-level products of the GNSS receiver
positioning unit. A comparison of the performances of
SVM and Neural Networks (NN) algorithms to detect
Non Line-Of-Sight (NLOS) multi-path is exposed in [30],
using native GNSS signal processing outputs as features.
Unsupervised ML algorithms, like K-means clustering,
have also been used with some success, for instance
in [31]. However, the latest and significant advances in
Artificial Intelligence (AI), and notably in Deep Learning
(DL), have opened up new perspectives. In [32], using
a CNN, a carrier-phase multi-path detection model is
developed. The authors propose to extract feature maps
from multi-variable time series at the output of the signal
processing stage using 1-Dimensional (1-D) convolutional
layers. DL spoofing attack detection in GNSS systems
was addressed in the research literature [33] as well.
Lately, [34] has proposed a combined CNN-Long Short-
Term Memory (LSTM) real-time approach, also based on
1-D convolution, and [35] and [36] have introduced the
use of 2-Dimensional (2-D) signal-as-image representa-
tion. [35] makes use of MLP input layers for automatic
features construction whereas [36] processes the images
by 2-D convolutional filters. A review of the recent

applications of ML in GNSS can also be found in [37],
focusing on use cases relevant to the GNSS community.

However, the multi-path difficulty is still a challenge
in GNSS signal processing, especially concerning the
most ambitious task, the multi-path removal. This ultimate
solution requires an accurate estimation of the multi-
path characteristics beforehand. To be more specific, the
multi-path can be completely modeled by mean of four
parameters, its delay, attenuation, frequency and phase.
Therefore, this research work focuses on the estimation
of these multi-path parameters through an original CNN
regression method.

The contributions provided in this work could be
summarized as follows. To the best of our knowledge,
this is the first model combining CNN regression and
distributional loss optimization that has been proposed.
There is a growing literature on multi-path detection
using machine learning techniques, however, this study
is one of the few research investigations, if not the
first, that has been studying the application of modern
deep learning methods to GNSS multi-path parameter
estimation. It is also worth noticing that the regression
model we propose works across input channels, using
information from several distinct channels to carry out
estimation. In that sense, the model is also different from
models that learn from Red Green Blue (RGB) images
that use replicas of the same input image under various
color channels. Finally, this study shows clear evidence
of boosted performance with the distributional regression
loss model when compared to basic CNN regression on
the GNSS multi-path application.

This article is organized as follows. Section II de-
tails the concept of CNN regression and distributional
loss. Section III describes the GNSS multi-path param-
eter estimation problem, details the experiments that are
conducted and provides numerical results. Section IV
concludes the article.

II. CNN Regression

A. Baseline CNN-Regression

Regression methods [38] have been extensively stud-
ied and applied to many kinds of engineering problems.
If data are not too complex, linear regression methods
may be used. Alternatively, when direct linear models are
not applicable, basis expansion may also be used in order
to carry out linear regression on features instead of raw
data. Mathematically, considering input vectors x ∈ X ,
one would like to express a response y ∈ Y as a linear
function of features φλ(x) ∈ H as y = w>φλ(x) where w
are the regression weights and λ represents the parameters
needed to represent x by its features in H. There are
several techniques to construct the features φλ(x) such
as basis function expansion to carry out polynomial
regression, methods for SVM [39] - in theses two cases
λ may represent degrees of polynomials or parameters
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Fig. 1. Image convolutional processing inside a CNN. Image
generated with [42].

of kernel functions respectively - or also neural networks
representations.

In this study, we are interested in the specific case
where X is a subspace of images that can be represented
in Rr1×r2×nC where r1×r2 is the resolution of the images
and nC is the number of channels (ex: nC = 3 for RGB
images or nC = 2 for GNSS correlation images on I
and Q channels in our study). For such input objects,
it has been shown empirically that the construction of
features φλ(x) using convolutional filters achieves the
best feature representation for image-like inputs [40].
This is the reason why several authors have proposed
convolutional network regression techniques to estimate
various information from images (see [10] for a review
of such techniques).

CNN are composed of several layers. Multiple
convolutional blocks are used in order to extract local
features in the images using a variety of parameterized
convolutional filters (see [2] for a detailed explanation
of convolutional mechanisms). Successive convolutional
layers combined with activation layers (usually rectified
unit activation layers) capture multiscale features in the
images. Stacking several convolutional blocks that are
separated by max-pooling layers to reduce dimension will
allow the extraction of highly complex features φλ(x)
where λ = (W l, bl)l=1,...,L, W l are the filter weights
tensors and bl are the bias vectors for the L convolutional
layers. These features are then fed to conventional dense
layers that are fully connected with connection weights
and compute the regression model y = w>φλ(x).
There are various architectures that can be designed for
such purposes. Among these, Visual Geometry Group
(VGG)-like networks [41] are often used since they have
proven to be very effective in practice. The idea is to
increase the number of convolutional filters when going
deeper in the architecture. See Figure 1 for an example
of a basic CNN architecture.

The CNN regression task on complex input data such
as images is intrinsically difficult. The training of deep
representations of features combined with the training of
a dense network on a large flatten feature representations
are required. Sometimes, the image information is also
spread across several input channels as we will see later
when dealing with I and Q GNSS correlation images (see
section III).

Therefore, the regression model has to construct com-
plex features representations from the various channels,
adding even more complexity to the overall regression
process. In order to ease the training of such multi-channel
regression, in the next section, we will propose to use a
soft label procedure. The main idea is to learn soft labels
rather than sharp target continuous values.

Note that in the following, the response of the
complete neural network regression model will be
written as y = Nθ(x) where θ = (λ,W ) and λ represent
filter and connection weights from the CNN network
architecture up to the penultimate dense layer and W is
the weight matrix storing all connection weights from
the last dense layers.

B. Soft labelling using distributional loss

In this section, we recall the concept of distributional
loss as proposed in [1]. Traditionally, given an input x,
the regression task consists in computing the parameter
θ of a regression model Nθ that would assign predicted
values Nθ(x) for given inputs x and targets y. The target
values y can be seen as expected values of an underlying
distribution of Y |x assumed to be Gaussian. Therefore,
in this setting, it is natural to calibrate the parameter θ by
minimizing a square loss function (Nθ(x)− y)2.
The target value y is usually considered as the ground
truth and obtained by experiments or measurements. How-
ever, it may be subject to uncertainty or ambiguity [11]
and may impair the generalization performance of the
regression model. The main idea of soft labelling is to
consider that the target value is an observation of an
underlying ground truth distribution and one may benefit
from learning the distribution rather than the individual
targets.
To do so, consider now the task of learning the distribution
Y |x instead of predicting directly E[Y |x]. For each target
value, a target distribution Y |x is chosen. This choice is
of course problem dependent. However in [1], it has been
shown experimentally, when no prior knowledge on the
target distribution is known, that the use of a truncated
Gaussian is the best choice among a variety of other
distributions. In the sequel of the article, we will therefore
assume that Y |x ∼ N[a,b](µ, σ

2) where N[a,b](µ, σ
2) is the

truncated Gaussian distribution of mean µ and variance
σ2 on the interval [a, b] with density

fµ,σ,[a,b](y) =
1

σ

ϕ(y−µσ )

φ( b−µσ )− φ(a−µσ )
1[a,b](y)

where ϕ and φ are the density and the cumulative distribu-
tion functions of the standard normal distribution N (0, 1).
In order to learn the target distributions, a discrete version
of Y |x is considered in the form of an histogram with
K bins. During training, as we are now comparing the
estimated distribution Nθ(x) and the target distribution
fµ,σ,[a,b], we can use the KL divergence as a loss function.
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Fig. 2. CNN architecture used for regression task on 80x80 images. Image generated on [42].

It is defined as follows

DKL(p||q) =

∫ +∞

−∞
p(y) log

p(y)

q(y)
dy

and measures how different q is from p. Using DKL

as a loss function will require to minimize simply the
following term also known as the cross-entropy

h(p, q) = −
∫ +∞

−∞
p(y) log q(y)dy.

If q is the estimated density and p is the target distribution
with density fµ,σ,[a,b], the cross-entropy can be written as

h(fµ,σ,[a,b], q) = −
∫ b

a

fµ,σ,[a,b](y) log q(y)dy.

For each input x, the estimated discrete distribution q is a
K-dimensional vector where each component i returns a
probability qi = (Nθ(x))i that the target value is in the bin
i. The number of bins K will be an hyper-parameter of the
method. The discrete target distribution p corresponding
to fµ,σ,[a,b] can also be seen as a K-dimensional vector
where each component i returns the probability mass pi =
F (ai+ti)−F (ai) contained in the i-th bin, where ai and ti
are the left bound and the width of the bin respectively and
F is the cumulative distribution of fµ,σ,[a,b]. Therefore, for
a given input x the distributional Histogram Loss (HL)
can be written as follows

HL(x) = −
K∑
i=1

pi log(Nθ(x))i

HL(x) = −
K∑
i=1

[F (ai + ti)− F (ai)] log(Nθ(x))i

After training, for a given input x, E[Nθ(x)] will provide
the estimated value of E[Y |x]. In [1], [11], experiments
have shown that learning target distributions rather than
hard target values will improve the generalization power
of the model. This method is different from transforming
the regression task into a classification task by discretizing
uniformly the support set of target values. Here, a target
distribution is assumed and learned during the process.
Additionally, by tuning the variance parameter σ and the
number of bins used to transform the target distribution
into an histogram, it is possible to adjust the bias-variance
trade-off achieved by the model.

C. Dedicated CNN architectures

In this study, in order to compare the HL strategy with
the classical CNN-Regression (CNN-Reg), two VGG-
like architectures [41] will be used. Sharing the same
backbone as shown in Figure 2, they only differ in their
outputs. The extraction part is composed by 3 convolution
blocks, each formed by consecutive convolutional layers
and ended by a max-pooling layer. The number of filters
is increasing with the depth of the convolutional layers.
At the end of the convolutional process, the data are
flattened to feed the 3 hidden dense layers. The output
layer consists in a single neuron equipped with a linear
activation function for the baseline CNN-Reg, and a
softmax layer with K outputs in the soft labelling case.
To differentiate the two algorithms, we will refer to the
network with a single output as CNN-Reg and the one
using the softmax output as CNN-Histogram Loss (CNN-
HL).

III. Application to GNSS multi-path parameter
estimation

A. Problem statement

The GNSS positioning principle is based on the dis-
tance measurement between satellites of known positions
and the receiver to locate. Using the propagation time of
a dedicated signal emitted by the satellite, the receiver
estimates its relative distance to the satellite [43]. Using
several distances, the receiver is able to calculate its
position by trilateration.

More precisely, the calculation process of the Position
Time Velocity (PVT) solution relies on the synchronisa-
tion between the received signal and a receiver replica of
the wanted signal. The alignment between both signals
requires the estimation of the three unknown parameters
of the incoming signal which are:

• The propagation delay τ ,
• The Doppler shift frequency fD ,
• The carrier phase φ.

In a classical receiver, this estimation process is typically
conducted by mean of the maximum likelihood principle.
It is implemented through the maximization of the cross-
correlation between the received signal and a local replica
signal parameterized by three test values τ̃ , f̃D and φ̃.
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In practice, the correlation operation is accomplished
through a product followed by an integrate and dump
stage. To be complete, it should also be pointed out
that correlation is split into two orthogonal channels,
named by convention In-phase (I) and in-Quadrature (Q).
The maximization task is generally carried out by loop
systems, namely the Delay-Locked Loop (DLL) and the
Phase-Locked Loop (PLL). In addition, the loops present
the intrinsic advantage to track the target parameters
which are time-varying due to the continuously changing
receiver-satellites geometry. No more than three correla-
tion points per I and Q channels are usually required for
normal loop operation.

However, various kinds of interference can deteriorate
the positioning process. Multi-path is one of the most
common and the most harmful interference. A multi-path
is a reflection on a surrounding obstacle of the useful
signal picked up by the receiving antenna concurrently
to the Line-Of-Sight (LOS) signal. An illustration of the
phenomenon is shown in Figure 3, generated by the SE-
Nav software [44], a signal propagation simulator. In
general, a receiver is impacted by multiple multi-paths,
especially in urban environments where reflectors are
numerous. Sometimes, the direct path may even be absent
due to an obstruction, for example when high buildings
are surrounding the receiver [45]. However, in this study
the assumption is made that the direct path is always
present and a single multi-path will be considered. Being
the replica of the signal of interest, the multi-path contains
the same information but with shifted parameters:

• The code delay in excess compared with the useful
signal ∆τMP ,

• The difference in Doppler shift frequency with the
useful signal ∆fMP ,

• The phase difference with the useful signal ∆φMP ,
• The attenuation of the multi-path with respect to the

magnitude of the useful signal αMP .

The addition of the multi-path to the direct signal
biases the result of the correlation operation. As a conse-
quence, the estimation of the incoming signal parameters
is altered and the accuracy of the position delivered to the
user may be degraded. With as few as three correlation
points per channel, the information available to detect the
multi-path contamination and possibly mitigate its effects
is poor.

This work proposes to use a larger number of correla-
tion points in order to overcome this lack of information.
Indeed, τ̃ and f̃D each sample a specific range, forming
a 2-D grid. The correlation outputs in turn compose a
2-D matrix, in other words an image. The signal having
2 channels, I and Q, there will be two 2D-images at the
output of the correlators. The general process is depicted
in Figure 6. Figures 4 and 5 are given as detailed examples
of the resulting images. Concerning the estimation of
φ, the necessary information is available through the
orthogonality property of the I and Q channels, the first

Fig. 3. GNSS receiver collecting LOS and NLOS signals in
Toulouse city center (France).

Fig. 4. I channel for a signal undergoing a multi-path with
τMP = 0.75 Tc2, fMP = 100 Hz, αMP = 0.8, φMP = 45◦.

one granting access to cos(φ) and the second to sin(φ).
The image construction is detailed in [36].

2The results presented in this paper where established using the GPS L1
C/A legacy signal. However, the authors are confident that they could be
generalized to other navigation signals, with the same overall structure,
as no specific assumption has been made. Tc is the chip period, a basic
defining parameter of this type of signal. Tc = 1/1023 ms for the GPS
L1 C/A signal.

Fig. 5. Q channel for a signal undergoing a multi-path with
τMP = 0.75 Tc, fMP = 100 Hz, αMP = 0.8, φMP = 45◦.

: 5



Fig. 6. Illustration of the image elaboration process. The received
signal is split in two orthogonal components. Next, each component is

correlated with a local replica signal whose parameters span a grid.
The result forms a 2D-image. The pair of images then supplies the
CNN implementing the regression task. The tilde notation indicates
the local parameter by opposition to the received signal unknown

parameter.

B. Experimental setup

1. Dataset definition
Experiments were made on several datasets which are

divided into 2 groups. The first group is characterized by
a fixed Carrier to Noise C/N0 ratio while the second has
distinct C/N0 ratio levels. The C/N0 figure represents the
ratio between the power of the signal of interest and the
receiver intrinsic noise level. In the GNSS community it
is considered as one of the most important figure of merit
for the quality of the received signal. The higher the ratio,
the more accurate the downstream parameter estimation.

In the first group, C/N0 is equal to 40 dBHz to
simulate a typical urban environment receiving condition.
The multi-path attenuation αMP is categorized to assess
the performance of both CNN algorithms as a function of
this parameter.

In this way, we have:

• Strong multi-paths where 0.6 ≤ αMP ≤ 0.9,
• Moderated multi-paths where 0.4 ≤ αMP ≤ 0.6,
• Weak multi-paths where 0.1 ≤ αMP ≤ 0.4.

The second group is composed by datasets with dif-
ferent C/N0 ratio while αMP ∼ U([0.1, 0.9]). The goal is

to evaluate the algorithms with respect to C/N0 , which
takes the following values:

• C/N0 = 43 dBHz,
• C/N0 = 40 dBHz,
• C/N0 = 37 dBHz,
• C/N0 = 34 dBHz.

Otherwise, all datasets share the same following vari-
ables:

• ∆τMP is uniformly generated in [0, 1.5] Tc,
• ∆fMP follows a truncated centered Gaussian distri-

bution with standard deviation σ = 125/3 Hz. ∆fMP

is restricted to [−3σ,+3σ] Hz,
• ∆φMP is uniformly generated in [0, 2π] rad.

Each dataset contains 10000 samples, a sample being
the I and Q image pair. In a dataset, image size does
not change. However, to observe the CNN parameter esti-
mation performance under lower input image resolutions,
various datasets were created: 80x80, 40x40, 20x20 and
10x10 pixels images.

To build this large amount of labelled data, a synthetic
correlator output generator has been developed. Able to
compute as many correlator output as necessary, the main
advantage of this tool is the control parameters such as
the C/N0 or the multi-path characteristics.

2. Hyper-parameter selection
Performance results provided in the next section are

results averaged over 10 runs. For each run, the training
set is formed by randomly selecting 8000 samples and the
validation set by selecting randomly 1000 samples among
the 2000 remaining samples. The last 1000 samples con-
stitute the test set.

CNN-Reg and CNN-HL were trained for 100 epochs
and have used a 1000 samples batch size. Learning rates
of both CNN were empirically fixed to 10−3 and 3x3
filters were used for convolutional layers as shown in
Figure 2. The number of bins for CNN-HL is fixed to
K = 100 (such as in [1]). The hyper-parameter σ follows
the following rule: σ = 2(b− a)/K.

C. Results

Performance assessment is based on averaged Mean
Absolute Error (MAE) results. For the CNN-Reg, the
MAE metric is as follows:

L∑
l=1

|Nθ(xl)− yl|

where L is the number of samples in the test dataset and
yl is the target value for the l-th sample. For the CNN-HL,
the MAE metric is calculated as follows:

L∑
l=1

∣∣∣∣∣
K∑
i=1

pi,xl
.ci −

K∑
i=1

qi,xl
.ci

∣∣∣∣∣
where
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• pi,xl
is the probability mass contained in the i-th bin

associated to the label of the l-th test sample xl,
• qi,xl

is the probability of the i-th softmax output
neuron associated to xl,

• ci is the center of the i-th bin for i ∈ [1,K] (where
the interval [a, b] has been partitioned into K equal
subdivisions).

Tables I, II, III and IV gather the averaged MAE per-
formance results as defined above for the two algorithms
CNN-Reg and CNN-HL on the first group of datasets.

Figures 7, 8, 11 and 12, established with the second
group of datasets, illustrate the CNN-Reg and CNN-
Reg MAE behaviour when C/N0 varies. The curves are
plotted according to a decreasing C/N0 because a high
C/N0 corresponds to better receiving conditions. The
scale on the x-axis starts from 43 dBHz (good receiving
conditions) and goes down to 34 dBHz (deteriorated
receiving conditions).

Additional results are also available in Tables V, VI,
VII and VIII of the Appendix A.

D. Results discussion

In Table I, it can be observed that in all conditions and
datasets, CNN-HL always shows better results than CNN-
Reg. The delay τMP estimation performance is higher
with CNN-HL on 20x20 images than the performance
of CNN-Reg on 80x80 images. Additionally, as expected
the average MAE and its standard deviation increase
as the image resolution diminishes. In Table II, similar
results are observed for strong multi-paths. For moderate
and weak multi-paths, the Doppler frequency estimation
performance remains better on 40x40 images with CNN-
HL than the performance of CNN-Reg on 80x80 images.
In Tables III and IV, similar behaviour as τMP estima-
tion are found. It can be noticed that in the particular
case of αMP estimation, the average MAE decreases
as the strength of the multi-path decreases. This could
be explained by the fact that in strong, moderate and
weak multi-path datasets, the αMP parameter estimation
is biased by the dataset design that only contains ranges of
αMP parameters. In Table IV, φMP estimation with both
CNN shows difficulties. For weak multi-paths on 40x40
images, the average MAE remains at a level of 14◦ which
might not be sufficient for practical multi-path mitigation
use.

Fig. 7. MAE behaviour according to C/N0 ratio for τMP estimation.

TABLE I
Average MAE τMP estimation error in 10−2 Tc for different

multi-path attenuations.

Dataset Image
size

Algorithm
CNN-Reg CNN-HL

Strong
multi-paths

80x80 2.50 ± 0.22 0.64 ± 0.18
40x40 2.91 ± 0.32 0.76 ± 0.11
20x20 4.30 ± 0.42 1.28 ± 0.20
10x10 6.70 ± 0.40 4.85 ± 0.17

Moderate
multi-paths

80x80 3.03 ± 0.54 0.66 ± 0.04
40x40 3.44 ± 0.65 0.96 ± 0.26
20x20 4.44 ± 0.45 1.63 ± 0.15
10x10 9.90 ± 0.72 7.35 ± 0.38

Weak
multi-paths

80x80 4.64 ± 1.44 1.01 ± 0.13
40x40 4.33 ± 0.42 1.55 ± 0.20
20x20 7.20 ± 1.55 2.86 ± 0.40
10x10 26.13 ± 1.96 21.17 ± 0.58

TABLE II
Average MAE fMP estimation error in Hz for different multi-path

attenuations.

Dataset Image
size

Algorithm
CNN-Reg CNN-HL

Strong
multi-paths

80x80 1.22 ± 0.20 0.60 ± 0.04
40x40 1.60 ± 0.27 0.75 ± 0.07
20x20 2.36 ± 0.41 1.17 ± 0.12
10x10 5.16 ± 0.26 3.60 ± 0.18

Moderate
multi-paths

80x80 1.33 ± 0.29 0.72 ± 0.06
40x40 1.70 ± 0.23 0.87 ± 0.06
20x20 2.61 ± 0.45 1.52 ± 0.11
10x10 7.08 ± 0.36 5.52 ± 0.27

Weak
multi-paths

80x80 1.75 ± 0.31 1.26 ± 0.15
40x40 2.41 ± 0.38 1.42 ± 0.13
20x20 4.30 ± 0.41 2.84 ± 0.45
10x10 21.48 ± .68 19.04 ± 1.07
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Fig. 8. MAE behaviour according to C/N0 ratio for fMP estimation.

Fig. 9. Comparison between the target and the prediction
distribution probabilities for a correct prediction.

In Figures 9 and 10, a comparison of label and predic-
tion distribution probabilities are shown. They correspond
to a correct and a wrong estimation respectively. Each
point of the plots represents the output of one of the
K neurons from the CNN-HL softmax layer. It can be
noticed that in Figure 9, both curves are nearly super-
posed and both form a near Gaussian distribution. In the
opposite, in Figure 10, the target and predicted probability
distribution do not coincide. This situation corresponds to
a wrong estimation. In this case, the Gaussian behaviour
is not so well reconstructed.

Fig. 10. Comparison between the target and the prediction
distribution probabilities for a wrong prediction.

Fig. 11. MAE behaviour according to C/N0 ratio for αMP

estimation.

TABLE III
αMP estimation error in % for different multi-path attenuations.

Dataset Image
size

Algorithm
CNN-Reg CNN-HL

Strong
multi-paths

80x80 3.95 ± 0.93 1.30 ± 0.26
40x40 4.45 ± 0.61 1.48 ± 0.14
20x20 5.60 ± 0.70 2.22 ± 0.20
10x10 7.32 ± 0.40 5.99 ± 0.25

Moderate
multi-paths

80x80 3.71 ± 0.64 1.08 ± 0.05
40x40 3.76 ± 0.53 1.22 ± 0.15
20x20 4.79 ± 0.55 1.73 ± 0.10
10x10 5.97 ± 0.16 5.00 ± 0.07

Weak
multi-paths

80x80 3.53 ± 0.88 1.91 ± 1.16
40x40 4.06 ± 1.28 1.38 ± 0.57
20x20 4.09 ± 1.10 1.66 ± 0.22
10x10 7.87 ± 0.33 6.08 ± 0.12
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Fig. 12. MAE behaviour according to C/N0 ratio for φMP

estimation.

TABLE IV
φMP estimation error in degrees for different multi-path attenuations.

Dataset Image
size

Algorithm
CNN-Reg CNN-HL

Strong
multi-paths

80x80 12.30 ± 1.46 4.19 ± 0.81
40x40 15.41 ± 3.46 4.80 ± 0.67
20x20 15.59 ± 2.44 6.34 ± 0.69
10x10 29.68 ± 2.06 24.12 ± 1.11

Moderate
multi-paths

80x80 15.71 ± 3.07 5.51 ± 0.89
40x40 15.72 ± 1.74 5.71 ± 0.88
20x20 17.90 ± 1.99 8.46 ± 1.03
10x10 42.55 ± 2.30 34.17 ± 2.02

Weak
multi-paths

80x80 26.45 ± 6.25 10.23 ± 0.84
40x40 30.06 ± 3.35 14.12 ± 1.28
20x20 29.57 ± 3.17 17.15 ± 2.01
10x10 70.23 ± 1.56 68.82 ± 2.27

E. Results synthesis

The experiments made on the various datasets show
the boosting effect of the CNN-HL algorithm which
always performed better than CNN-Reg with not only a
lower average MAE but also a lower standard deviation.
The gain brought by the distributional technique allows
more accurate and precise estimation on smaller images.
The input size could be reduced from a resolution of
80x80 to 40x40 and sometimes 20x20. The results tend
to indicate that the multi-path phase estimation is a more
difficult task and the level of performance achieved by
the models might not be sufficient in practice.

IV. Conclusions

Estimating information from images is a useful but
difficult task. In this work, we have addressed deep
learning regression from multiple images channels. The
proposed model makes use of convolutional neural layers
in order to extract high level features from images. Instead

of carrying out classical regression on these extracted
features, a soft labelling approach is used to learn under-
lying target distributions. The idea is to allow the neural
network model to account for some uncertainty in the tar-
get and therefore increase its generalization performance.
The target distributions are modeled using histograms
and a specific histogram loss function based on the KL
divergence is applied during training. The resulting neural
architecture incorporates a softmax output in order to
reconstruct the histogram discrete target probability. The
complete process could be applied to any applications
that requires inference of function values from multiple
images channels. The model is applied to GNSS multi-
path estimation where multi-path signal parameters have
to be estimated from correlator output images from the I
and Q channels. The multi-path signal delay, attenuation,
Doppler frequency and phase parameters are estimated
from synthetically generated datasets of satellite signals.
Experiments are conducted under various receiving con-
ditions and various input images resolutions. For all
receiving conditions that have been tested, the proposed
soft labelling CNN technique using distributional loss
outperforms classical CNN regression. In addition, the
gain in accuracy obtained by the model allows downsizing
of input image resolution from 80x80 down to 40x40 or
sometimes 20x20. This reduction of image resolution is
a first step towards the implementation of such models in
physical receivers that are limited in the number of corre-
lator outputs that can be designed. Although real datasets
are difficult to construct and label, further research using
the CNN-HL model on GNSS data should focus on data
that incorporates real receiving conditions. Additionally,
from a model perspective, future investigation should
propose adaptive histogram loss techniques that adjust the
number of bins and target distribution parameters to the
data.
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Appendix

The following tables show the CNNs regression per-
formances on datasets with different C/N0 ratio. In
Mixed multi-paths, multi-path magnitude αMP is ran-
domly picked in [0.1, 0.9] where 0.1 is synonymous of a
weak multi-path and 0.9 means a strong one.

A. MAE behaviour under C/N0 fluctuations

TABLE V
τMP estimation error in 10−2 Tc for different C/N0 levels.

Dataset Image
size

Algorithm
CNN-Reg CNN-HL

Mixed multi-paths
(C/N0 = 43 dBHz)

80x80 3.33 ± 0.63 0.80 ± 0.09
40x40 4.28 ± 0.60 1.18 ± 0.21
20x20 5.31 ± 0.70 2.16 ± 0.21
10x10 11.63 ± 0.59 8.43 ± 0.53

Mixed multi-paths
(C/N0 = 40 dBHz)

80x80 3.82 ± 0.68 0.87 ± 0.14
40x40 4.92 ± 0.94 1.33 ± 0.22
20x20 7.00 ± 0.78 2.38 ± 0.24
10x10 16.34 ± 1.19 11.68 ± 0.62

Mixed multi-paths
(C/N0 = 37 dBHz)

80x80 5.83 ± 1.52 1.00 ± 0.21
40x40 5.13 ± 0.57 1.44 ± 0.19
20x20 7.88 ± 1.30 2.43 ± 0.24
10x10 22.88 ± 0.84 15.95 ± 0.89

Mixed multi-paths
(C/N0 = 34 dBHz)

80x80 5.75 ± 1.55 1.09 ± 0.08
40x40 6.73 ± 1.88 1.38 ± 0.19
20x20 8.86 ± 2.25 2.70 ± 0.39
10x10 30.11 ± 1.69 22.35 ± 0.66

TABLE VI
fMP estimation error in Hz for different C/N0 levels.

Dataset Image
size

Algorithm
CNN-Reg CNN-HL

Mixed multi-paths
(C/N0 = 43 dBHz)

80x80 1.61 ± 0.11 0.98 ± 0.08
40x40 2.05 ± 0.28 1.22 ± 0.09
20x20 3.16 ± 0.18 2.02 ± 0.17
10x10 9.08 ± 0.40 7.46 ± 0.36

Mixed multi-paths
(C/N0 = 40 dBHz)

80x80 1.62 ± 0.34 0.98 ± 0.11
40x40 2.06 ± 0.36 1.20 ± 0.16
20x20 3.40 ± 0.34 2.13 ± 0.18
10x10 12.40 ± 0.76 10.05 ± 0.52

Mixed multi-paths
(C/N0 = 37 dBHz)

80x80 1.65 ± 0.24 1.15 ± 0.13
40x40 2.27 ± 0.30 1.32 ± 0.12
20x20 3.74 ± 0.60 2.19 ± 0.22
10x10 16.54 ± 1.05 13.70 ± 0.89

Mixed multi-paths
(C/N0 = 34 dBHz)

80x80 1.74 ± 0.17 1.30 ± 0.17
40x40 2.45 ± 0.38 1.44 ± 0.24
20x20 3.81 ± 0.56 2.38 ± 0.28
10x10 22.57 ± 0.86 19.82 ± 1.31

TABLE VII
αMP estimation error in % for different C/N0 levels.

Dataset Image
size

Algorithm
CNN-Reg CNN-HL

Mixed multi-paths
(C/N0 = 43 dBHz)

80x80 3.03 ± 0.71 1.34 ± 0.26
40x40 4.19 ± 1.50 1.68 ± 0.41
20x20 4.42 ± 0.45 2.04 ± 0.29
10x10 6.28 ± 0.21 5.40 ± 0.21

Mixed multi-paths
(C/N0 = 40 dBHz)

80x80 3.48 ± 0.98 1.34 ± 0.21
40x40 3.78 ± 0.60 1.57 ± 0.16
20x20 4.97 ± 0.61 2.32 ± 0.27
10x10 8.28 ± 0.24 6.87 ± 0.15

Mixed multi-paths
(C/N0 = 37 dBHz)

80x80 4.04 ± 0.96 1.44 ± 0.21
40x40 4.13 ± 0.97 1.81 ± 0.46
20x20 6.07 ± 1.18 2.25 ± 0.17
10x10 11.96 ± 0.64 9.65 ± 0.43

Mixed multi-paths
(C/N0 = 34 dBHz)

80x80 5.86 ± 1.05 1.61 ± 0.22
40x40 5.69 ± 1.76 1.91 ± 0.26
20x20 7.00 ± 1.43 2.30 ± 0.17
10x10 17.34 ± 1.22 13.74 ± 0.28
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TABLE VIII
φMP estimation error in degrees for different C/N0 levels.

Dataset Image
size

Algorithm
CNN-Reg CNN-HL

Mixed multi-paths
(C/N0 = 43 dBHz)

80x80 17.96 ± 2.37 6.45 ± 0.85
40x40 20.13 ± 2.08 8.25 ± 1.08
20x20 20.00 ± 2.05 10.81 ± 0.76
10x10 40.88 ± 2.03 35.28 ± 1.43

Mixed multi-paths
(C/N0 = 40 dBHz)

80x80 19.90 ± 3.92 7.70 ± 0.56
40x40 21.90 ± 3.51 8.97 ± 1.13
20x20 22.73 ± 3.15 10.78 ± 1.13
10x10 50.63 ± 2.56 43.66 ± 1.83

Mixed multi-paths
(C/N0 = 37 dBHz)

80x80 19.95 ± 1.67 9.02 ± 0.70
40x40 25.06 ± 3.15 10.09 ± 0.97
20x20 26.00 ± 3.82 13.57 ± 0.98
10x10 62.75 ± 1.84 56.07 ± 2.62

Mixed multi-paths
(C/N0 = 34 dBHz)

80x80 24.34 ± 3.87 9.95 ± 1.48
40x40 26.42 ± 3.30 10.35 ± 0.91
20x20 26.59 ± 2.16 14.59 ± 1.18
10x10 71.71 ± 1.91 71.1 ± 3.01
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