

RAY

# SE-3D-CLOUDS



### **CREATION OF 3D CLOUDS**

TPA

SE-3D-CLOUDS, extension of the SE-Workbench-EO, is a set of tools and data dedicated to the physics-based 3D clouds modelling. This package is the perfect solution for people who need the 3D representation of clouds

#### **Features**

- Realistic 3D representation of any type of clouds
- Spectral rendering in the visible, SWIR, MWIR and LWIR band



- Compatible with SE-RAY-IR and SE-FAST-IR
- Fast design option with pre-defined MODTRAN® settings

| ✓ Clouds definition  Default MODTRAN Cumulus  Default MODTRAN Stratus  Default MODTRAN Stratus  Default MODTRAN Stratus  Default MODTRAN Stratus/s  Default MODTRAN Stratus/s  Default MODTRAN Standar  Default MODTRAN Standar  Default MODTRAN Sub Visu  Default Cecloud  MicCloud1_1.8km_2.8km_0.43 | Profiles Physical parameters Properties  Name Default MODTRAN Cumulus profile  Type of cloud Water cloud |                          |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------|---------|
|                                                                                                                                                                                                                                                                                                        | Altitude<br>(km)                                                                                         | Water density<br>(g.m-3) | (g.m-3) |
|                                                                                                                                                                                                                                                                                                        | 0.66                                                                                                     | 0.2                      | 0.0     |
|                                                                                                                                                                                                                                                                                                        | 1.5                                                                                                      | 1.0                      | 0.0     |
|                                                                                                                                                                                                                                                                                                        | 2.7                                                                                                      | 0.3                      | 0.0     |
|                                                                                                                                                                                                                                                                                                        | 3.0                                                                                                      | 0.15                     | 0.0     |
|                                                                                                                                                                                                                                                                                                        | 3.5                                                                                                      | 0.0                      | 0.0     |

 Advanced interface to control all the physical parameters of clouds

#### **MODELLING CHALLENGE**

Representing 3D clouds in a physics-based electro optic synthetic environment is a complex challenge due to the specificity of this "object" that is highly variable. Its morphology and shape change with the wavelength, which is not true for a standard solid object. The boundary of a cloud is not well defined so the distance to a cloud is meaningless. The only distance we can consider is the optical length that is highly dependent of the wavelength

OKTAL-SE has decided to meet this challenge by providing a complete solution to:

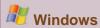
- Set the physical parameters of various cloud types
- Compute radiative properties of this scattering environment
- Design the cloud coverage of the synthetic environment
- Render the clouds in real-time mode in visible and infrared bands

## **EO/IR** rendering

3D clouds can be rendered in the full electro-optic domain from the visible to the long wave infrared band (LWIR). The output of SE-3D-CLOUDS is compatible with both the real-time (SE-FAST-IR) and the ray-tracing (SE-RAY-IR) rendering



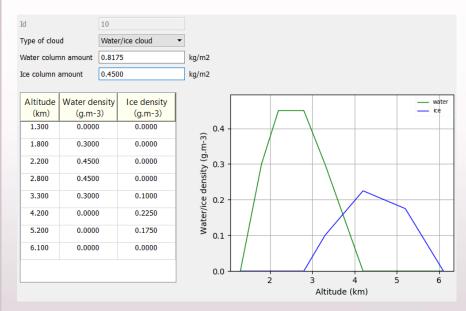
The cloud radiometry is computed thanks to a physical model that takes into account microscopic and macroscopic parameters. The resulting radiance values are consistent with the MODTRAN® computations


#### **Benefits**

- Localisation of cloudy zones can be controlled in terms of coordinates and cloud type
- The computed radiances of 3D clouds are consistent with MODTRAN values
- Possibility to create its own cloud reference database
- Various clouds types can be mixed in the same 3D environment2

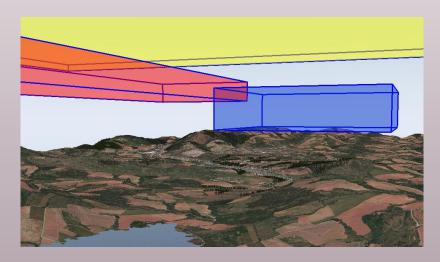





## **System requirements**






## **Physical parameters**

The creation of a 3D cloud relies on a set of physical parameters that can be either taken from MODTRAN® database or created by the end-user. Those parameters are water (and/or ice) vertical profiles and spectral data like extinction and absorption coefficients. New spectral data can be added by using the Mie theory for water droplet clouds



## **Cloud landscape**

A cloud landscape can be made of various types of clouds. Each of them must be localized in volumes that are designed by the end-user directly in the SE-SCENARIO interface



#### OKTAL-SE

11 avenue du Lac 31320 Vigoulet-Auzil France Phone: +33 (0)5 67 70 02 00 - Fax: +33 (0)5 67 70 02 05 Mail: contact@oktal-se.fr website: www.oktal-se.com