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ABSTRACT: 

As years went by, virtual environments have 
become much more complex. The computation 
and rendering growing capacities allowed synthetic 
environment users to have much bigger mock-ups 
(several thousands of square kilometres), with 
much more detail, much more precision (up to 50 
cm precision on aerial photos). When dealing with 
infrared rendering, this means having a lot of 
images to classify (i.e. associating to each pixel of 
a texture a physical material suited for infrared 
rendering), especially aerial photos that are the 
basis of the mock-ups terrain. Manually classifying 
those terrain textures is costly... and tedious. 
Moreover, manual classification of big sets of aerial 
photos, especially if several operators take part in 
the process, can lead to discontinuities and 
inconsistencies. The solution to this problem is 
automated, or semi-automated, infrared 
classification. Automated classification of a texture 
means being able to automatically associate to a 
pixel of a texture a physical material or a physical 
materials composition, in a more or less certain 
way. This paper presents some automated 
classification methods and why they cannot be 
used, in our framework, on a daily basis. It then 
roughly describes the semi-automated 
classification method created by OKTAL-SE and 
the spectral validation method used to validate this 
classification method. Comparative results, 
obtained by automatically classifying an existing 
and already manually classified virtual mock-up, 
are then presented. Finally this paper discusses 
future enhancements allowing getting round 
existing limitations. 
 
 
1. INTRODUCTION 

As years went by, virtual environments became 
much more complex. The computation and 
rendering growing capacities allowed us to have 
much bigger mock-ups, with much more details, 
much more precision. 
 
When dealing with infrared (IR) rendering, for 

OKTAL-SE this means having a lot of images to 
classify, especially aerial photos that are the basis 
of the mock-ups terrain. 
 
Manually classifying those terrain textures is 
costly... and tedious. Moreover, manual 
classification of big sets of aerial photos, especially 
if several operators take part in the process, can 
lead to discontinuities and inconsistencies. 
 
The solution to this problem is the automated, or 
semi-automated, IR classification. 
 
Automated classification of a texture means being 
able to automatically associate to a pixel of this 
texture a material or a materials composition, in a 
more or less certain way. 
 
This document will study several automated 
classification methods, detail the method chosen 
by OKTAL-SE, present a validation method and 
discuss future enhancements. 
 
 
2. AUTOMATED CLASSIFICATION METHODS 

FOR IR DATABASE 

When dealing with IR automated classification, it is 
quite clear that having multispectral images can 
grandly simplify the problem.  
 
If we have an aerial photo of a field of green grass 
with, in the middle, a house with a concrete roof, 
painted the same green as the grass. Using only 
the RGB visible information would lead to 
associate the same material to the pixels 
representing the field and the roof though their 
radiative and thermal properties are very different. 
The same problem occurs when dealing with pixels 
representing elements with the same material but 
one being in the shadow and the other in the sun. 
 
When having multispectral images, such as 
Landsat photos, the automated classification 
becomes much “easier”.  
 
For example we could use the retro-computation 
method . This method consists in analysing every 
pixel of the texture to classify, in all the available 
spectral images and deduce its physical spectral 
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properties forming the “real” material that this pixel 
represents. Once it is done, for each pixel, we 
browse the SDM material library to find the 
“closest” material to this real material. 
 
The metric used to determine the distance 
between two materials can be, for example, based 
on the difference between all the properties values. 
Those value differences could be weighted 
according to the importance we give to some of the 
properties, to the degree of certainty we have on 
how those properties were deduced. 
 
But, as we can imagine, deducing the physical 
spectral properties of a material from several 
radiance information is not that easy. Especially 
since the spectral response of a terrain is 
completely dependent on the atmospheric 
conditions when the aerial photo was taken, the 
date, the hour, etc., information that we do not 
precisely have. It is the same for the gain applied 
to the photo that can drastically modify the 
information we perceive. 
 
The conclusion is that this method could be very 
precise... but requires information we cannot have 
for sure. 
 
The scattergram method  is somehow simpler to 
use. In this case, we do not try to deduce the 
physical spectral properties of each pixel but we try 
to take into account the ratios between the 
different pixel values in the different domains. A 
scattergram is a hypercube where we can 
materialise those ratios.  
 
In a scattergram, if we affect an axis for each 
available spectral photo, we can locate each pixel 
of the texture by giving it, on each axis, its value as 
coordinate (RGB colour for visible image, radiance 
for IR images). If the number of dimensions of the 
scattergram is sufficient and the spectral images 
are in domains that are differential enough, it is 
clear that two pixels that are close in the 
scattergram share the same material. 
 
Once it is done, the only problem remaining is to 
determine which material of the SE-WORKBENCH 
material database is shared by those pixels, or at 
least which is the closest. This could be done by 
spotting the different SE-WORKBENCH materials 
in the scattergram and affecting a SE-
WORKBENCH material to the closest pixels in the 
scattergram, or by choosing a minimal and 
maximal allowed deviation and affecting a SE-
WORKBENCH material to all the pixels that are in 
the scattergram areas corresponding to this 
material. 
 
But this problem is not so simple. It supposes to 
build a test database with all the SE-
WORKBENCH materials and generate multi-
spectral images similar to the images used for the 

classification (same atmospheric condition, same 
gain, etc.) in order to be able to locate our 
materials in the scattergram. 
 
So even if this method is simpler than the retro-
computation method, we find the same issue: it 
requires information we cannot have for sure. 
 
Moreover, those two methods, as well as other 
methods that could be based on multi-spectral 
images... presume that we have multi-spectral 
images. But it is almost never the case. The only 
“usual” case where we have multi-spectral images 
is when we use Landsat data. But Landsat images 
have a 16m precision, which is not always enough 
for the virtual environments we build, and their 
spectra are not differential enough to have a high 
quality result with those methods that remain costly 
to apply. 
 
The only sure thing when using aerial photos for 
generating 3D database is: we always have the 
visible images. So even if trying to automatically 
classify a texture for IR from a visible image is 
neither simple nor sure, it is the only direction we 
can take if we want to use automated classification 
on a daily basis. 
 
3. OKTAL-SE AUTOMATED CLASSIFICATION 

METHOD 

3.1. Overview of the method: keep it simple 

Automated classification using visible images is 
quite simple because we do not have too much 
available information: being given an aerial photo 
to classify, being given a SE-WORKBENCH 
materials set, we choose a colour for each material 
(that will be the reference colour/material palette) 
and affect this material to the pixel that are the 
closest to its colour in the colour cube. 
 
But we can be a little subtler than that. 
 
First, with a little pre-processing, we can reduce 
the material reference palette. We do not have to 
arbitrarily choose a colour for each SE-
WORKBENCH material and then apply this palette 
to the aerial photo (that would almost be the same 
as choosing them at random). We can use the 
photo itself to give us an idea of what the “main 
photo colours”, the most relevant colours, are by 
reducing the number of colours and so choose 
relevant materials. 
 
If we have several photos of a zone to classify, the 
only difference is that we should first assemble 
them (some tools do it correctly) in order to apply 
the process of colour reduction and choice on the 
whole zone, guaranteeing some continuity in the 
classification of each photo. 
 
Once it is done, with an image editing software, we 



 

can reduce the number of the colours of the image 
to N, N being classically 16 or 32 colours. The only 
work to do is then to look at those N relevant 
colours and decide which SE-WORKBENCH 
logical material corresponds (by looking at the 
photo or by finding information in other sources 
such as land cover or even Google Earth). 
Once a relevant material/colour palette has been 
created, we can get back to our original texture(s) 
and start the classification process. For each pixel 
in the image, we find the material with the closest 
colour and affect it to the corresponding pixel in a 
classified texture. 
Of course it will not solve the green grass/green 
concrete problem (see chapter 2). But the effects 
of this problem could be attenuated by performing 
the closest material search in the HSV (hue, 
saturation, value) colour frame and not in the RGB 
colour frame. 
For example, if we have grass in the sun and grass 
in the shade, their RGB colours will be quite 
different. But in the HSV colour frame, since they 
share the same hue and probably the same 
saturation, being only differentiated by the value 
(or brightness), chances are that they will be 
considered close enough to share the same 
material. 
We can also choose a greater amount of relevant 
colours that will allow us to have grass in the 
shade and grass in the sun colours and affect the 
same material “grass”. 
Finally, besides the green grass/green concrete 
problem, we also have a problem with the water. 
Seen from the air, rivers, lakes, ponds, are not 
always “as blue as the sea”. They often have a 
greenish hue. And so it is very probable that the 
automatic classification method will mistake it for 
grass or field. The only solution is then to perform 
a pre-processing on the texture to classify: 
selecting all the pixels representing water and 
adding a transparency component. The automatic 
classification tool will then know that a pixel with a 
transparency component should be associated to 
the water material. 
Once this work is done, the texture to classify can 
be passed, as well as the colour/material reference 
palette, to the automatic classification tool 
developed by OKTAL-SE. 
 
3.2. Validating and tuning using Landsat data 

Of course an automated classification must be 
validated. And the validation process can also be 
considered as a part of the classification process 
by its “tuning” aspect: once the validation data 
have been built, we can always fine tune our 
material/colour material palette using the validation 
results. 

3.2.1. Creating validation data in several 
spectral bands 

 
As we said in 2, the multi-spectral images available 

are usually Landsat data that are available for 
virtually any area in the Globe. They are not 
precise enough (16m) and the spectra available 
are not differential enough to be used for a method 
based on multi-spectral images, but they can be a 
good material for validation. 
 
The idea is to take the automatically classified 
texture we want to validate and the corresponding 
Landsat data. From the classified image, we build 
a simple SE-WORKBENCH scene modelling the 
area represented by the original aerial photo and 
put it in a SE-SCENARIO scenario. 
 
Then, for each available Landsat spectral image, 
we add a corresponding context, an adapted 
sensor and compute a SE-RAY image that we can 
compare to the Landsat photo. 
 
But things are not so simple: to do that we need to 
recreate an environment that is consistent with the 
Landsat images. 
 
 

3.2.2. Retrieving consistent atmospheric data 
and context 

 
To be able to perform a SE-RAY simulation and 
compute images that can be compared to the 
Landsat spectral images, we need several pieces 
of information: 
- The position of the sensor in the scene 
- The sensor characteristics 
- The atmospheric conditions 
- The thermal information  
- The gain applied to the spectral photos 
 
The sensor position in the scene can be retrieved 
from the Landsat information: the sensor is on a 
satellite that is at an altitude of 705km and must be 
placed at the centre of the area. 
 
The sensor characteristics can be retrieved from 
the Landsat handbook. 
 
Some information allowing us to recreate the 
atmospheric condition can be retrieved quite easily 
in the Landsat metadata, such as the date, but 
some are missing, as the hour of day. And we of 
course know the location. 
 
Using that, we can retrieve the thermal information 
needed to compute the SE-WORKBENCH thermal 
data. This information is the air temperature for the 
24 hours on the day the photo was taken. It can be 
found in meteorological database that are 
accessible through the Internet. At this point, the 
only problem is that, when dealing with a 
100kmx100km area, choosing the average air 
temperature can be difficult. 
 
But we still need the atmospheric conditions.  



 

Usually, the aerial photos are taken on fine 
weather days so any fine weather atmospheric 
condition of the SE-ATM-DB (SE-WORKBENCH 
atmospheric database) could be fine. But we can 
refine that by using meteorological database that 
will give us more precise information about the 
exact weather on that day. 
 
Another problem is that, for Landsat data for 
example, the sensor is at an altitude of 705 
kilometres. This is a problem for SE-
ATMOSPHERE that has not been designed to 
compute such atmospheric conditions. OKTAL-SE 
thus had to develop a small tool allowing the user 
to create “satellite weather condition”. 
 
The gain applied to the image can be retrieved 
from the Landsat handbook that gives abacus to 
compute the minimal and maximal gains for every 
image. 
 

3.2.3. Validation of classification 
 
So once we retrieved the information we needed in 
order to have, for each available Landsat spectral 
image, consistent atmospheric data, consistent 
sensor and sensor position, consistent gain, all we 
have to do is to compute the corresponding SE-
RAY (SE-WORKBENCH ray tracer software) 
images and to compare it to the Landsat images. 
 
Note : Other data can be used to complete this 
validation such as looking at land cover data or 
looking at GoogleEarth. 
 
 
3.3.  Limitation 

We already know the main limitation of this 
method: it is the difficulty to distinguish between a 
green pixel representing grass and a pixel with the 
same green representing some concrete painted 
green or, two pixels with grass, one in the shade 
and one in the sun. 
 
But the limitations can also come from the aerial 
photo itself, especially for Landsat data.  
 
For example, Landsat data sometimes have clouds 
in it. In this case, the automatic classification 
method will not detect it and affect to the cloud 
pixels the material with the closest colour.  
 
There can also be colorimetric discontinuities in a 
set of aerial photos representing a whole area to 
classify, leading to classification inconsistencies. 
 
Those problems can force us to do a lot of image 
edition pre-processing, in addition to the water 
processing, and lead to an even more imprecise 
result. 
 

4. EXPERIMENTATION 

 
4.1. Automated classification using Landsat 

data 

This part of the experimentation consists in 
applying the automated classification on an area 
using visible Landsat images and validating this 
classification using the multi-spectral 
corresponding Landsat data. Every step of the 
procedure will be detailed, including the building of 
the validation data. 
 

4.1.1. Procedure 
 
� Classification 
 
The first step is, of course, to retrieve the Landsat 
data on the area we want to model. For this 
experimentation we chose the Lodeve area (a 
small town near Montpellier in the South of France) 
because we also had the BD ORTHO® of this area 
(see chapter 4.2 for more detail). 
 
We extracted from the Landsat data the area 
corresponding to the area covered by the BD 
ORTHO® data in order to have a smaller Landsat 
photo to classify (classifying the whole Landsat 
photo would have required to cut the photo up into 
smaller photos which is costly and not interesting 
in our context since only a small zone interests us). 
The second step was to pre-process all the water 
areas. It was done using an image-editing tool. 
 
Then we reduced the Landsat photo colours. We 
reduced the colours down to 16 colours, creating a 
“palette” image. We also created a 32 colours 
palette image in order to test the influence of the 
number of materials on the automatic 
classification. Once those palette images have 
been generated, we used an image-editing tool to 
transform them into indexed colour images in order 
to be able to access their colour palette. 
 
Once the two palette images were created, we 
retrieved the 16 and 32 relevant colours of those 
images in order to create the two actual 
material/colour palette text files.  
 
The construction of the material/colour palette is 
probably the most crucial step in the automatic 
classification process... and the most tedious one. 
 
Using an image-editing tool on the palette images, 
for each colour of the colour palette of this image 
we must locate the pixels of this colour and 
determine which SE-WORKBENCH material is the 
most relevant among the available materials. 
 
The resolution of the Landsat photo data being 
very low, for some areas it can be necessary to 



 

use other information sources such as Google 
Earth or land cover. 
 
Once the palettes are ready, we created two 
material files (one for the 16 colours palette, one 
for the 32 colours palette) containing: 
- A material referencing the RGB texture to 

classify 
- The list of all the logical materials listed in the 

palette 
- The multi-domains library describing those 

logical materials 
Then all we have to do is to use the OKTAL-SE 
prototype tool RGB2IPC on a colour/material 
palette and the corresponding material file. 
 
The result is a classified material file referencing 
the classified texture corresponding to the RGB 
texture. 
 
The automatic classification process is now 
finished. We can then create the validation data. 
 
� Creating the validation scenes 
 
As we saw it in chapter 3.2, we need various data 
in order to be able to validate (and possibly tune) 
our automatic classification. 
 
We need: 
- Validation databases 
- A sensor consistent with the various Landsat 

spectral bands 
- Atmospheric conditions consistent with the 

various Landsat photos 
- Thermal data consistent with the various 

Landsat photos 
- The gain applied to the spectral photos 
 
Creating the validation databases is relatively 
simple. We will create a simple plate which 
dimensions are the classified Landsat photo 
dimensions (we can compute it quite simply: 1 
pixel corresponds to 14,25m).  
 
In real life, when generating a terrain database, the 
terrain relief and the Earth roundness influence the 
infrared rendering. But the satellite being at an 
altitude of 705km and, for a whole Landsat 
representing one arc degree, the altitude delta 
induced by the Earth roundness being about 
200m, we can reasonably ignore the relief and 
Earth roundness and represent the scene as a 
plate. 
 
We will map the classified texture on this plate. 
The sensor will be placed at the centre of the plate 
at an altitude of 705km. It is a simple sensor, with 
no spectral response. We will create one context 
per Landsat band. 
 
The atmospheric data were generated with a 
spectrum covering all the Landsat wavebands and 

ranges and altitudes up to 300km. 
 
The thermal data were computed from atmospheric 
file generated using information found in weather 
database accessible through the Internet. 
 

4.1.2. Results and limitations 
 
� Gains 
 
The gains of all Landsat images can be computed 
from their wavebands, their metadata and from 
abacuses that can be found in the Landsat 
handbook. 
 
The Landsat wavebands are the following: 
 

Landsat 7 Wavelength (µm) 
Band 1 0.45 - 0.52 
Band 2 0.52 - 0.60 
Band 3 0.63 - 0.69 
Band 4 0.77 - 0.90 
Band 5 1.55 - 1.75 
Band 6 10.40 - 12.50 
Band 7 2.09 - 2.35 
Band 8 0.52 - 0.90 

 
The Landsat images gains abacuses are the 
following. They give, for each image, the low and 
high gains. What gain an image uses can be found 
in the metadata. 
 

 

Figure 1. Landsat images gains 
 
We first computed images in the Landsat 
conditions, i.e. seeing the whole area from 705km 
above.  
 
The following images show, on the left, the 
Landsat images, on the right the images computed 
with SE-RAY for 16 with the Landsat gains applied 
for band 6 context (LWIR band). 
 



 

  

Figure 2. Band 6 reference and simulated image 
 
So first, it seems that our atmosphere is not 
opaque enough: this causes the contrast to be 
higher than in the Landsat images. Otherwise, the 
classification results are quite coherent with the 
Landsat images. 
 
 
4.2 Application to BD ORTHO ® data   
 
This part of the experimentation consists in 
applying the automated classification on an area 
using visible BD ORTHO® images and validating 
this classification using the multi-spectral 
corresponding Landsat data. Every step of the 
procedure will be detailed, including the building of 
the validation data. 
 

4.2.1. Procedure 

� Classifying 

The first step is of course to retrieve the BD 
ORTHO® data on the area we want to model. As 
said in chapter 4.1.1, we chose the Lodeve area 
because we already had the BD ORTHO® data of 
this area. 
 
The second step was to pre-process all the water 
areas. It was done using an image-editing tool. 
 
Then we created the palettes. To cover the area 
we want to work on, the BD ORTHO® data requires 
several aerial photos. So, in order to build global 
colour palettes (to insure continuity in the material 
used), we first had to build a composite photo 
gathering all the BD ORTHO® photos (with a lower 
resolution). We work on this composite to create 
the 16 and 32 colours palettes. 
 
We reduced the composite photo colour down to 
16 colours and 32 colours using an image-editing 
tool. Once those palette images have been 
generated, we transform them into indexed colour 
images in order to be able to access their colour 
palette. 
 

Once the two palette images were created, we 
retrieved the 16 and 32 relevant colours of those 
images in order to create the two actual 
material/colour palette text files.  
 
Once the palettes are ready, we created the two 
material files (one for the 16 colours palette, one 
for the 32 colours palette) needed by the automatic 
classification tool but this time containing all the BD 
ORTHO® images. 
 
Then we used the OKTAL-SE prototype tool 
RGB2IPC on a colour/material palette and the 
corresponding material file. 
 
The result is a classified material file referencing 
the classified texture corresponding to the RGB 
texture. 
 
� Creating the validation scenes 

The creation of the validation scene for the BD 
ORTHO® data was exactly the same as for the 
Landsat data, described in chapter 4.1.1 (actually 
they were almost the same since we had to get in 
the same conditions) except for the database itself 
that was not a simple plate but a grid with the 88 
BD ORTHO® textures mapped on the grid cells. 

4.2.2. Results and limitations  

� Gain 

Since we wanted to have exactly the same 
conditions for all the images, in order to be able to 
compare them to the real Landsat images, the 
gains applied were also the same as for the 
Landsat simulation.  
 
 

   

Figure 3. Band 5 reference and simulated image 
 
So as for the Landsat simulation, it seems that our 
atmosphere is not opaque enough: this causes our 
water to be blacker than in the Landsat images 
and the whole image to be brighter than it should. 
Otherwise, the BD ORTHO® classification results 
are quite coherent with the Landsat images. 
 
 



 

5. OPTIMISATION STRATEGY: USING LAND 
COVER INFORMATION 

So as we foresaw it, one of the main limitations of 
our method is that, if we associate for example the 
ochre colour to the “wheat field” material, and we 
have a village with ochre roofs, the automatic 
classification algorithm will not be able to make the 
difference. 
 
One way to get round this problem is to use land 
cover information. 
 
The land cover or land use is the human use of 
land. Land use involves the management and 
modification of natural environment or wilderness 
into built environment such as fields, pastures, and 
settlements. 
 
5.1. Method 

The method itself is quite simple: instead of using a 
global colour/material palette on the aerial photo to 
classify, we use the land cover information to 
know, for each pixel, what is the nature of the area 
it is located into and perform a material search in a 
palette consistent with the nature of this area. 
 
So the automatic classification method could be 
optimised by using, in addition to the texture to 
classify, a land cover file and a configuration file 
containing, for each type of zone of the land cover, 
a colour/material palette. Then for each pixel, we 
find the land cover zone it belongs to, retrieve the 
corresponding palette and perform the material 
search. 
 
In practical terms the automated classification 
method would have an extra step (part of it could 
be automated too): instead of creating the global 
colour/material palette on the whole global texture, 
we would first divide it into layers corresponding to 
the land cover areas, then create the 
colour/material palette of each zone and finally 
start the classification process. 
 
One must however be careful not to use too many 
materials (otherwise the classified texture will 
trespass the SE-WORKBENCH material 
limitations). For example, grass is grass, even if in 
reality there is a difference between a neat city 
lawn and a rough pasture grass. 
 
 
5.2. Results and limitations 

Some tests were carried out using a BD ORTHO® 
aerial photo and the corresponding data of the 
CORINE land cover. 
 

 

Figure 4. BD ORTHO® aerial photo 
 

 

Figure 5. CORINE land cover 
 
The first step to accomplish in order to determine if 
the land cover could really help us to enhance our 
automatic classification method was to check that it 
gave good results with manual classification. 



 

 

Figure 6. Correlation between BD ORTHO® and 
CORINE land cover 

 
Then we used the land cover to divide the aerial 
photo into layers in the SE-CLASSIFICATON 
meaning and used SE-CLASSIFICATION to 
simulate an automatic classification with a four 
colours palette in each layer.  
 
The result was highly instructive. 
 

 

Figure 7. Classified texture 
 
As we can see it from the images above, the land 
cover layers limits can clearly be seen. Another 
problem is that the urban areas and the forest 
seem very uniform. 
 
The layer limits problem can be obviously 
explained. First the resolution of the land cover is 
very low. The layer limits are thus raw. Besides, in 
the real life, the limits between a village and its 

surrounding fields are not so clear. 
 
The uniformity problem on urban areas can be 
explained by the fact that we used four materials 
by layer, and that is far from enough for an urban 
area, and that we used SE-CLASSIFICATION that 
interpolates materials according to the colour 
interpolation, and in an urban area, with four 
materials, this leads to a smoothing of all the area. 
 
The uniformity problem on a forest can be 
explained by the fact that a forest has a fairly 
uniform colour so with our method it ends up with 
the same material and thus is uniform. But in real 
forests, trees have different heights, different 
varieties of trees, creating colour variations. 
 
 
5.3. Next step 

One way to work around the layer limits problem 
could to create border zones (by giving a thickness 
to the layer limits for example) where a pixel would 
be tested against the palettes of the nearest layers 
and its material chosen with a smart random if 
needed. 
 
Let us give an example of an urban zone 
surrounded by an agricultural zone. 
 

      

Figure 8. Urban zone with border area 
 
We build a border zone by growing/shrinking the 
area limits. 
 
In this area, we will test all the pixels against the 
two layer palettes. If only one material is close, we 
choose this one. If there two materials in the two 
palettes that are close, then we will choose the 
material randomly, according to the distance of the 
pixel to the layers: the closest we are of one layer, 
the higher is the chance to get its material. In the 
central area of the border area, the probability to 
pick one material or the other is equal. 
 
The uniformity problem on a forest could be solved 
by adding bump mapping or random noise to 
create a modulation of the classified areas. But we 
must be very careful to keep a physical 
consistency and not be tempted to add a noise that 
has no physical sense because “it is prettier”. 
 
The uniformity problem on urban areas will 
naturally be enhanced by the automatic 
classification method since this method associates 



 

one material to one pixel and does not interpolate 
materials according to the colours as SE-
CLASSIFICATION does, but the main problem will 
be unchanged: an urban area contains a lot of 
different materials and, due to rendering software 
limitations, we will probably not be able to afford 
such a high number of materials. 
 
 
6. ANOTHER LEAD: MIXING WITH TEXTURE 

SYNTHESIS 

Using land cover and several palettes to enhance 
the automated classification could significantly 
improve the results, especially for urban areas. But 
it is a long way and it might be costly. And it will not 
solve the aerial photo resolution problem. When 
using Landsat images, a pixel is 16 m wide. Thus, 
when getting closer to the database, even if the 
classification is perfect, everything gets blurred 
(and we do not mean “pedestrian closer”, just 
“helicopter closer”). 
A way to solve this problem and the uniformity 
problem on urban and forest area could be to add 
texture synthesis to the automated classified 
databases. 
 
The principle is quite simple. First the Landsat 
aerial textures are automatically classified. Then, 
using land cover information, a detailed texture is 
synthesised, using generic classified textures 
representing forest, fields of various crops, even 
villages. The generic textures precision is around 
50 cm. Those two textures are then combined 
using the multi-texturing mechanism, ensuring a 
smooth transition. 
 
Experimentation was conducted on a Landsat 
image fragment, in the visible spectrum (the point 
here was to study the visual transition between the 
aerial photo and the synthesised texture) but it will 
be fairly similar in the infrared spectrum. The result 
of this experimentation is shown in the three 
images below. They represent the same database 
seen from a shortening distance: first from far 
away, then from a medium distance, then from a 
quite short distance. 
 

 

Figure 9. Database fragment seen from far away : 
the Landsat image is seen 

 

 

Figure 10. Database fragment seen from far away : 
the Landsat image is seen 

 

 

Figure 11. Database fragment seen from medium 
distance : only the synthesised texture is seen 

 
This method could also participate in solving the 
texture weight problem. When dealing with wide 
databases (several hundreds of kilometres by 
several hundreds of kilometres), especially for real 
time rendering, the amount of textures can be 
huge. And the limitation is clear: the global texture 
size must be inferior to 2Go. The following table 
sums up the memory cost for a million pixel 
texture, for a database that should be rendered in 
both the visible and infrared spectra, for the 
OKTAL-SE real time and non real time rendering 
products. For example, for a 128 km x 128 km 
database, we would need 360 millions of pixels, 
which makes a memory cost of 8,5 x 360 = 3060 
Mo for eight materials... 
 
Using Landsat 16 m precision images, the same 
area can be covered by a single texture of 
8 000 x 8 000 pixels that weights 8,5 x 64 = 
544 Mo for eight materials. When adding 
synthesised texture as a detailed texture, each 
different generic texture should have a size around 
one kilometre. For a 50 cm precision, this makes a 
one million of pixels texture weighting 8,5 x 1 = 
8,5 Mo for eight materials. 
 
It is thus clear that even if we use a dozen of 
generic textures (that should be enough for 
describing countryside areas), the global texture 
weight is much lower and the visual result is 
correct, even if we still have to work on the 



 

transition between two generic textures (as shown 
in the image above, when the synthesised texture 
is seen from a short distance). 
 
 
7. CONCLUSION 

This experimentation showed us that the “rough” 
method results were not as bad as expected. They 
can even be considered as correct for aerial 
database that do not require a high precision level. 
Some ideas to make it more precise are simple (for 
example creating palettes with a lot of colours 
leading to a low number of materials in order to 
make sure that the colours are associated to the 
material we want) but even testing those ideas 
takes a lot of time.  
 
So before thinking of setting up a more complex 
method using land cover or other information, we 
should first speed up the production process in 
order to be able to validate this method further and 
see where the simple improvements lead us. 
 
Two steps represent major bottlenecks for the 
“rough” method: the water pre-processing and the 
palette creation. 
 
Creating a palette requires to describe each colour 
of the palette with its RGB components and to find, 
in the multi-domains materials library, the logical 
material that will be associated to this palette. 
 
The user has then to manually add all the logical 
materials used in the palette to the material file to 
classify, reference the multi-domains materials 
library used before the RGB2IPC tool can be 
started. This task can be long if we have to build a 
palette with many materials and it is tedious. 
 
This bottleneck could be widened by a simple tool 
allowing the user to choose the multi-domains 
materials library to use, the material file to classify 
and to build the palette using a friendly GUI: 
creating a list of pairs, one being a RGB colour 
chosen from a colour. This tool could then 
suppress any previous classification or just classify 
the texture that has no classification yet, copy the 
logical material chosen, reference the multi-
domains materials library and start the automatic 
classification. 
 
We could also imagine that this tool could generate 
a benchmark 3D database, allowing the user to 
easily test the automatic classification with the 
OKTAL-SE rendering tools. 
 
We could also imagine that this tool could be able 
automatically create a composite texture from all 
the textures to classify, reduce the number of 
colours of this composite to a given number and 
suggest a primary palette that the user can then 
modify. While we are at it, it could also create the 

materials file to classify. 
 
Another bottleneck is the pre-process of the water. 
This is an extremely long and tedious task, 
especially when dealing with wide database 
requiring several hundreds of aerial photos. 
 
A major improvement could be to automate this 
process. But automating such a process is 
complex and will probably require simplifications. 
 
For example, we could imagine using cartography 
information (land cover or vectorial information) to 
automatically make the rivers, lakes, etc. as water. 
This would of course lead to rivers that would be 
much more regular than the real rivers but, in the 
optic of database meant for aerial simulation, this 
should be acceptable and save a huge amount of 
production time. 
 
This could also solve the “road problem”: if we are 
able to pre-process linear feature such as rivers 
and associate them right away with the correct 
material, we could do the same for roads. 
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