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Figure 1 From left to right: Entry data (building footprint), first derivation step, setting up extrusions and final building. 

ABSTRACT: 
Urban Warfare training can be achieved with infrared/NVG embedded sensors, such sensors can also be used for 
infrared image recognition and target identification training. In the infrared domain, the 3D representation of a 
facade is necessary in order to have realistic representation with regards both to thermal computation and 
thermal effects. In the radar domain, this type of facade modelling is quite necessary with regards to edge and 
corner reflection effects. During the specifications of infrared enhanced vision systems or infrared embedded 
security systems, the usage of simulation reduces the cost and time required to validate a product. But to ensure 
the reliability of such virtual simulation, it is necessary to use a large panel of simulation tests. Creating these 
tests, and especially the one in urban area could be time consuming. The capacity to quickly generate credible 
digital city models helps the users to achieve their studies. Detailed modelling of realistic towns is a real 
challenge for computer graphics. Modelling a virtual city that is detailed enough to be credible is a huge task that 
requires lots of hours of work. In this context, automatic approaches can bring a real added value. We present a 
new technique to automatically generate building exteriors. Our technique relies on the definition of building 
templates that will be applied on building descriptions. Building frontages are generated using a 2.5D wall 
grammar based on a set of rules that can be simple or detailed enough to fulfil the users wishes. Our method is as 
easy to use as the texture repetition but provides a higher level of realism and diversity in the resulting buildings. 
Then little information is necessary to generate a whole building: the walls and roof height, the building 3D 
footprint and the chosen template. This information can be stored within a Geographic Information System. 

INTRODUCTION 
Recent improvements of applications in virtual reality, video games and simulation of city expansion have 
increased the suitability of digital mock-ups for urbanism studies. For example, urbanisation leads to emerging 
problems such as the influence of electromagnetic radiations, the prediction of the noise propagation to create 
noise pollution models or the forecast of urban transportation networks. On the other hand, the next generation of 
Global Navigation Satellite System (GNSS) will take advantage of city 3D models. The capacity to quickly 
generate credible digital city models helps the users to achieve their studies. 
 

 
Figure 2: Hierarchical division of city generation 

Detailed modelling of realistic towns is a real challenge for computer graphics. Modelling a virtual city that is 
detailed enough to be credible for a visitor is a huge task that requires thousands of hours of work. In this 
context, working on automatic approaches can bring a real added value. Such automatic approaches represent a 
promising research topic that must be developed since the current results do not satisfy the previously defined 
needs. As shown in Figure 2, the process of city generation can be divided into seven stages.  
 
In this paper we focus on the stage that deals with the generation of building exteriors. We suggest to handle this 
stage by the use of building templates. A building template consists of three different sets of templates (roofs, 
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frontages and groundwork). The generation of groundwork can create polygons that connect the 3D building 
footprint to the building walls. The generation of roofs uses a straight skeleton based method to create various 
roof types. The generation of the frontages is based on a 2.5D parametric wall grammar. The main topic of this 
paper is the frontages generation method that OKTAL-SE has developed and its associated wall grammar. 
 
The objective of the work described in this article is to create a system that imports building footprints defined 
by 3D polygons and building heights. Then the system uses these data to create 3D building models as specified 
by the user requirements. Typical usage will start with a 3D ground model obtained from a Geographic 
Information System (GIS). The building outlines and heights can be obtained automatically or defined by the 
user inside a GIS (that was the case for the example shown in Figure 14). Then, building templates have to be 
assigned to building outlines, this can be done manually, randomly or using any socio-statistical data available 
into the GIS. Once the setup has been performed, our system will create the building models taking into account 
all these previously defined information. 
 

 
Figure 3: Details of the building described in Figure 1 

We have designed a system able to generate any geometric details found on usual building frontages. Our system 
easily handles the vertical and horizontal alignments and repetitions used in almost every human construction. 
One important requirement was to focus on specific patterns, so our system also allows to benefit from building 
properties that can be identified inside a given building frontage. That is why we have created a wall grammar 
based system designed only for frontages in order to simplify its usage and take advantage of frontage 
specificities. Another purpose of our works is to facilitate on the one hand the resort of repetition schemes on 
every part of our frontages and on the other hand the usage of previously generated 3D objects (such as balconies 
or cornices). 

1.1 OVERVIEW 
This paper is organised as follows: Section 0 describes the wall grammar used to generate frontages, then 
Section 0 deals with the description of groundwork and roof templates. Our results can be found in Section 0, 
discussion about advantages and drawbacks of our tool in Section 0, and conclusions and future work in Section 
0. 

FRONTAGES TEMPLATES 
This section constitutes the main contribution to our research work. A frontage template contains a list of 
keywords, a primary wall and potentially a default material. A frontage template can only be chosen if it is 
geometrically compatible with the frontage (i.e. the minimal and maximal width and height of the frontage 
template are compatible with the width and height of the frontage). Among the templates that can fit the 
frontage, the choice depends on the keywords stored by the user in the footprint data and the template. For 
example, the user can define the blind keyword for a frontage without any aperture, or the entry door keyword 
for the main segment of the building footprint. The frontage templates containing the blind or entry door 
keyword will then be preferred for those frontages. The default material is used by the walls that do not have a 
background material so as to ensure graphical coherence for a complete frontage. 
 
 
 

1.2 WALL GRAMMAR 
We have chosen a formal grammar representation to describe our frontages. We wanted to propose a system 
efficient and simple to understand and use. We decided to work on a wall grammar that can be seen as a split 
grammar that uses walls as its elements (instead of shapes). 
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We have reached a minimal set of five rules, a terminal one (see 1.2.2), two position rules (see 1.2.3 and 1.2.4) 
and two repetition rules (see 1.2.5and 1.2.6). This choice allows us to easily deal with instantiation and repetition 
of given walls. 

 
Figure 4: The relations between our classes/derivation rules 

Formal grammar: it consists of a finite set of terminal symbols (the letters of the words in the formal 
language), a finite set of non-terminal symbols, a finite set of production rules with a left- and a right-hand 
side consisting of a word composed with these symbols, and a start symbol. 
 
Each rule (wall) is able to determine its required space (min/max dimension in vertical and horizontal directions) 
by a simple computation on itself and its children. Then, among the geometrically possible primary rules 
(frontage template), one is chosen for the current frontage using the keywords defined in the templates and in the 
building description. 

1.2.1 ABSTRACT WALL (W) 
The abstract class Wall stores the information that is shared by the different rules (see Figure 4 for class 
diagram).  
 
It deals with the background material as well as the final dimensions of the wall (horizontal and vertical). The 
minimal and maximal dimensions are computed depending on the wall's internal element size. Moreover, the 
user can define preferred dimensions that will automatically be used if they are geometrically valid. 
 
In the following descriptions, W can be any instance of abstract wall, i.e. Bordered Wall, Extruded Wall, etc. 

1.2.2 WALL PANEL (WP) 
A wall panel is the simplest element of our system. It is our unique terminal symbol. 
 
Besides the data that each wall shares (dimensions and background material), a wall panel can have an external 
reference to a 3D object or a decoration material (for example a texture of a window). In this case, the 3D object 
will be instantiated in the centre of the wall panel surface. When a 3D object is instantiated, the user can choose 
it to create the background faces (or not). 
 

 
Figure 5: An example of background face suppression in a Wall Panel 

Besides a lot of practical tricky cases have to be handled. For example, this is useful for 3D objects that model 
entry halls, because in this case a background face must be suppressed (in order to not hide the 3D objects placed 
inside the building), see Figure 5. 
 
 
 

1.2.3 BORDERED WALL (BW) 
A bordered wall (see Figure 6-left) is a wall with four margins (left, right, top and bottom) and a central 
element that references a wall. 
 
Each margin has a size and a resize policy that can be minimum, maximum or fixed. The default value for the 
resize policy is minimum, which means that the border cannot be smaller than the defined size. 



4  2007 
 

BW → W 

1.2.4 EXTRUDED WALL ($EW$) 
An extruded wall (see Figure 6-right and Figure 8) is a wall that extrudes its child wall according to a given 
depth. 
 

 
Figure 6: Left: bordered wall. Right: extruded wall with a negative depth 

This depth can be positive (respectively negative): the child wall and its border faces are in front of the frontage 
(respectively the child wall goes inside the frontage). Figure 7 illustrates the usage of the depth. 
 

 
Figure 7: Positive and negative value of the depth of an extruded wall 

Four Booleans are used to define if the depth faces have to be generated or not. Moreover, an extruded wall can 
contain a 3D model that will be instantiated on its surface (i.e. depth = 0). This 3D model is used for decoration 
purpose as the guardrail in Figure 6. 

EW → W 
 

 
Figure 8: An example of an Extruded Wall with an external reference (a 3D model 

 
This wall is important in our system since it allows to create relief on the frontage, which make them much more 
realistic (as illustrated by Figure 9). 
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Figure 9: Example of building with extrusion at different times of day 

1.2.5 WALL LIST (WL) 
A wall list contains several walls and an orientation that can be either horizontal or vertical. 
 
The different walls will be created from left to right (for a horizontal wall list) or from bottom to top (for a 
vertical one) in order to cover the frontage zone assigned to the wall list. 
 

WL → W1 W2 ... Wn 

1.2.6 WALL GRID (WG) 
A wall grid contains a unique wall that can be repeated in one or two directions (vertically and/or horizontally). 
 
For each of these directions, the number of repetitions is controlled by the minimum and maximum cardinalities 
(h times in the horizontal direction and v times in the vertical direction).  
 

WG → W(1-h)(1-v) 

GROUNDWORK AND ROOF TEMPLATES 

1.3 GROUNDWORK TEMPLATE 
A building footprint can be a non-planar polygon. Nevertheless, the floor of the building is assumed to be flat 
and horizontal. Groundwork is used to adjust each building with the ground. A groundwork template contains a 
groundwork type and a groundwork material texture if needed. 
 
The different groundwork types currently available are:  

• Z min: The frontage starts from the minimum footprint altitude, no additional faces are generated, but part 
of the frontages can be buried (some openings can be covered by the ground). This groundwork type is 
mainly used when the ground altitude variations are small or when the template is meant for that case (i.e. 
chalet template). 

• Z max: The frontage starts from the maximum footprint altitude, no additional faces are generated. 
Typically, the building is floating above the ground. This groundwork type is interesting when the user 
wants to take care of the groundwork himself.  

• Extruded: The frontage starts from the maximum altitude of the footprint and then groundwork faces are 
used to link the frontages to the ground. For each segment of the building footprints, some vertical faces are 
created between this segment and the original footprint beneath it. 

 

 
Figure 10: The three different kinds of groundwork templates. From left to right, zMin, zMax and Extruded 

Figure 10 shows these groundwork types. The groundwork material will only be used in the case of an extruded 
groundwork. If no material is given by the template, the groundwork faces use the default material of the 
building template. 

1.4 ROOFS 
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One of the objectives of this work is to be able to accept any non-intersecting polygon as entry data for our 
templates. It must even accept polygons with holes. This leads us to use the Straight Skeleton method [Eppstein 
and Erickson1998] on the polygons describing the building footprint. As this algorithm is valid for such 
polygons, we are able to offer several roof types that can always be applied on our buildings, whatever the 
configuration. 
 
The available roof types can be classified into four categories: the flat roofs, the one-sloped roof, the two-
sloped roofs and the four-sloped roofs. The first two categories contain only one roof. The flat roofs can have a 
border on their side, whose height is the same as the roof height. The one-sloped roof is obtained by putting the 
longest footprint segment at the roof height and its furthest segment at the wall height. As the building outlines 
are not restricted to quadrilaterals, the main difference between the last two categories is the presence of gables 
on the generated roofs: the four sloped roof templates do not create gables whereas the two-sloped roofs do. We 
will now detail our roof templates with two or four slopes. These templates were mainly inspired by the works 
on the two-sloped roof that can be found in [Laycock and Day 2003]. In order to define more precisely our 
different roof types, we introduce the notion of flap as a part of a roof slope divided into flat parts. 
 

 
Figure 11: Examples of roofs for various two sloped roof templates. From left to right:  
standard two slopes, gambrel, shed gambrel 

First, we are going to give details on the two-sloped roofs that can be seen in Figure 11: 

• standard two slopes: This roof type creates vertical gable faces on the smallest segments of the building 
outline. These faces often use the default material defined in the building template in order to give a 
coherent aspect to the building. Furthermore, the gable faces are created by displacing skeleton points to the 
building outline segment (in the direction of the skeleton segment). The regular faces (roof faces that are 
not gables) are created with only one flap. 

• gambrel: This roof type creates two slope roofs with gables. The regular faces is made of two flaps, the 
lowest one has a steeper slope than the upper ones.  

• shed gambrel: This roof type creates three flaps for each regular roof face. It can be described as the 
addition of a quasi-horizontal flap at the bottom of a gambrel roof. 
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Figure 12: Examples of roofs for various four sloped roof templates. From left to right: four slopes, mansard, pagoda, porch, Dutch 
hip 

Then, we are going to give details on the four-sloped roofs that can be seen in Figure 12: 

• standard four slopes:  This roof type creates only regular faces, with a constant slope (i.e. one flap per 
slope). 

• mansard: This roof type can be seen as an extension of the gambrel one with only regular faces. Each slope 
contains two flaps, the lowest one has a steeper slope than the upper one. 

• pagoda: This roof type aims at generating pagoda roofs. It can be seen as an extension of the shed gambrel 
ones with only regular faces that contain three flaps each. 

• porch: This roof type creates only regular faces. Each slope contains two flaps, the highest one has a steeper 
slope than lesser one. 

• Dutch hip: The roofs created by this roof type are hybrid roofs with an upper part (standard four sloped 
roof) placed on a standard two-sloped roof (with gables). 

 
A roof template is defined by a roof type, an overhang type, an overhang size, a slab size and some materials (for 
the roof, gables, overhang and slabs). When the user wants to create roofs bigger than the building outline, he 
can use overhang. Then he can decide if they are closed, opened or have slabs. Slabs are vertical faces built 
along the outline of the roof. Overhangs and slabs can be defined for all our roof types. 

RESULTS 
 

   
Figure 13: Three different buildings generated from the same building footprint. Left: a Hausman building with a mansard roof (94 
faces). Middle: a glass building, with 2 external objects for the entry hall and a flat roof (350 faces). Right: a highly extruded 
building with a four-sloped roof (5600 faces). 

1.5 PERFORMANCE AND COMPLEXITY 
One of our test scenes includes 17362 buildings. The building footprints were defined from an IGN planimetry 
file (IGN is the French National Geography Institute), each building footprint and height has been manually 
defined by a graphic designer. Then, this user has created his own building templates and has applied them on 
the buildings using the SE-AGETIM tool (cf. 1.6). A view of the final scene can be seen in Figure 14, the 
building generation took 7 minutes and 55 seconds, and 920,182 faces were generated. 
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Figure 14: Urban area made of 17 362 buildings, the building generation took 7mn and 55sec, 920 182 faces were generated. 

In order to test the complexity of our building templates, we have used them on this scene. Using the simplest of 
our building templates (comparable to the one on the left in Figure 13), we have generated this scene in 6 
minutes and 51 seconds. The final scene contains 618,050 faces. Using the most complex of our building 
templates (comparable to the one on the right in Figure 13), we generated this scene in 3 hours and 27 minutes. 
The final scene contains 25,449,776 faces. 
 
These results have been obtained on a 2GHz AMD Athlon 64. The screenshots have been generated using the 
OKTAL-SE multi-sensor ray casting engine SE-RAY (Figure 1, Figure 11, Figure 12 and Figure 13) and the 
OKTAL-SE real time viewer SE-GPF (Figure 3, Figure 14 and Figure 16). 

1.6 INTEGRATION 
Our system is implemented in C++, while our building templates are described and stored within a XML 
framework (OKTAL-SE XIO format). This project was developed so as to create abstract geometry, thus we do 
not depend on a given software or 3D library. Currently, only one implementation is available. 
 

 
Figure 15: Current state of our frontage template editor. 



9  2007 
 

Our building template description and generation system has been integrated to the OKTAL-SE SE-
WORKBENCH/CHORALE tool suite to form the SE-AGETIM-BUILDING module of the OKTAL-SE 
terrain generator SE-AGETIM. This integration to the SE-AGETIM tool allows the user to import various GIS 
data, such as VMAP, DTED, DFAD SEDRIS or DXF data and then create a set of building footprints, choose 
the desired building templates and generate the building as well as the surrounding terrain. This implementation 
is meant to generate large complete zones (currently up to hundreds of thousand km²). 
 
The SE-AGETIM-BUILDING building template editor allows the user to create and edit his own building 
templates and to calibrate them by testing the frontage and roof templates one by one against any kind of 
footprint. Figure 15 shows the GUI of this  building template editor. 
 
The left panel shows the current state of the building template. The right panel allows the user to edit the current 
building template element (groundwork template, roof template, frontage template, walls).  
 
A library of very generic building templates has been developed by OKTAL-SE and is delivered with the SE-
AGETIM tool (in the version including the SE-AGETIM-BUILDING module). Those generic building 
templates are currently used during large terrain mock-ups generation to populate them with buildings.  
 
OKTAL-SE also used this system to create very realistic mock-ups that can be corrected and regenerated in a 
minimum of time. Figure 16 shows an example of a mock-up of Toulouse down town.  
 

 
Figure 16: View of the Toulouse mock-up: automatically generated building 

The geo-typical SE-AGETIM-BUILDING approach applied to such very geo-specific modelling cases shows 
the power of the method, compared to a purely manual modelling : The realism is comparable to a manual 
modelling process but every building can be modified and regenerated automatically, allowing the user to easily 
and quickly play with geometrical frontage details, especially the ones repeated a lot of times such as windows 
or balconies. Besides, the building templates can be reused in other mock-ups. 

DISCUSSIONS 
Number of rules: As the user can define the complexity of his templates, our system can be used to generate 
credible digital city models as well as cities used for aircraft simulation (less detailed) with our five rules. Even 
though it is theoretically possible to create a unique template including all of our rules, this system has been 
preferentially designed so as to enable the user to describe one distinct kind of building. A distinct approach, 
based on the use of a larger rule database, allows the user to describe buildings using only high-level attributes. 
Future works about our rule selection mechanism will allow us to create such kind of complex building 
templates even if it was not our primary goal. 
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Usability of the system: Several of the templates that have been presented in this paper were created by a 
graphic designer. Once the user has understood a given frontage template, he can begin to create his own 
templates by modifying the materials. Then, he can experiment by changing the wall template parameters 
(dimensions, cardinality for a wall grid, border size and policy for a bordered wall etc.). After these two learning 
phases are performed, the user knows the five different kinds of rules, and their parameters. From this moment, 
he is able to create new templates by himself from scratch. 
 
Geometric complexity: As shown in Figure 13, our buildings can contain a limited number of faces. We are 
able to control the complexity of the generated buildings, using levels of details, textures, geometry 
simplification (merging coplanar faces) and appropriate templates. It is also possible to control the complexity of 
buildings by instantiating more often the biggest frontage part (i.e. the ones with less polygons per surface unit). 
 
Multi-sensor simulation: As our buildings are generated using the OKTAL-SE multi-domains materials 
system, they are “naturally” designed for multi-sensor simulation: as long as the user enhanced the materials 
with the necessary physical properties, they can be used for simulation in any domain (infrared, SAR, etc.). 

CONCLUSIONS AND FUTURE WORK 
In this paper, we have introduced a new pragmatic approach for generating buildings from their footprints. The 
main advantages of our work are: 

• Generation for any building footprint, convex or not, even with holes. 
• Creation of simple or complex frontages, according to the user requirements. 
• Availability of various kinds of roofs independently of the footprint complexity. 
• It has already been integrated to (and used in) the OKTAL-SE terrain modeller, SE-AGETIM. 
• Creation of frontages (from photos) of existing buildings. 

 
A current use of our system is the generation of 3D models of cities for the calibration of SAR (Synthetic 
Aperture Radar) simulation such as the ones described in [Soergel et al. 2005]. Our system is able to create 
cities of a given complexity that helps to validate the results of this kind of simulation. We have to enhance our 
roof templates in order to enable the user to instantiate 3D models on the roofs, because roof details are difficult 
to deal with in SAR simulation.  
 
We intend on one hand to improve the source data quality, typically with regard to footprints, using GIS level 
correction procedures included in the SE-AGETIM tool and on the other hand to improve the realism of our 
frontages and roofs, as mentioned above, by handling for example complex apertures, chimneys, antennas, zinc 
work, gutters, etc. 
 

 
Figure 17: Preliminary results of our road network generation system.  

The buildings are created using the system described in this article  

Finally we also work on the unification with the SE-AGETIM-INDOOR module of the SE-AGETIM tool, 
which allows the user to generate single building with indoor content (room dividers, furniture, etc). 
The final goal of our work is to propose a complete city creation system. As shown in Figure 2, the generation of 
city models can be divided into seven stages. As we are already capable of producing furnished buildings (see 
[Larive et al. 2004] and  [Xu et al. 2002]), our next research topic will deal with the generation of road 
networks, lots and building footprints (see Figure 17 for our current results). Once these stages will be 
completed, we will propose a complete city creation system. 
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