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Abstract
Photon Mapping [Jen01] is a really interesting algorithm for simulating global illumination. Most of time, this
method is used to render images in visible spectrum. In this paper, we show how to apply the method to a wider
spectrum, in particular, for Infra-Red (IR) simulation. The major limitation of Photon Mapping method is the
memory consumption. All surfaces are emissive in IR spectrum. Thus we have to use a huge number of photons
to reduce noise. Furthermore, extension to spectral method also increases memory needs. We present a multi-pass
photon map method which provides very accurate results using few memory resources which allows us to use as
many photons as we need.
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1. Introduction

Nowadays, image synthesis is used in many domains from
video games to architecture. Another major field is Infra-Red
simulation. IR permits to analyze a lots of thermal phenom-
ena such as detecting hot points in engines, detecting prob-
lems of isolation in a house, viewing people in night. Most of
time, image synthesis produces images in visible spectrum
(RGB). We choose to adapt a global illumination technique
to spectral IR rendering. First we will describe the Photon
Mapping method [Jen01] which proposes a great number of
advantages. Then we will show how it can be adapted easily
to spectral rendering. Finally we propose a multi-pass Pho-
ton Mapping method to reduce memory cost without losing
simulation accuracy.
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2. Background

Photon Mapping [Jen01] is an extension to Monte Carlo ray-
tracing techniques [BLS94, VG95]. The goal of this global
illumination method is to speed up computation times while
providing the same advantages as Monte Carlo techniques.
First, we will explain density estimation which is basis of
the Photon Mapping method, then we will describe a Photon
Mapping algorithm.

2.1. Probability Density Function

2.1.1. Definition

For a continuous function, the probability density function
(PDF) is the probability that the variate has the value x. Since
for continuous distributions the probability at a single point
is zero, this is often expressed in terms of an integral between
two points.

∫ b

a
f (x)dx = Pr[a≤ X ≤ b]

For a discrete distribution, the PDF is the probability that the
variate takes the value x.

f (x) = Pr[X = x]

2.1.2. Importance sampling

PDF are mostly used in Monte Carlo integration to speed up
computing time. They are used to choose sample points with
a particular distribution. Convergence time decreases when



the correspondence between the distribution and the func-
tion to integrate increases. In Photon Mapping, PDF can be
used each time we have to choose an emission or reflection
direction or to choose if a photon should be absorbed or re-
flected.

2.2. Photon Mapping concept

Photon Mapping consists in a two-pass method. First we
propagate light flux from light sources into the scene and
store illumination information in a specific data structure in-
dependent from the geometric model. Then we use a classic
ray-tracing method to render the image using density esti-
mation of the photon map.

Photon emission : Photons are created on the light sources
located in the scene. Any type of light source can be han-
dled. The power of all light sources is divided among all the
emitted photons. A photon is a data structure which contains
a fraction of the light sources power, a position and a propa-
gation direction.

Photon Propagation : Photons emitted from the light
sources are propagated into the geometric model with stan-
dard ray-tracing methods. Each time a photon has an inter-
section with a surface, the Russian roulette method is used
to know if the photon is absorbed or reflected. Jensen pro-
posed to store photons in different photon maps according
to their path. It is useful to optimize particular effects such
as caustics. For better comprehension, we assume that we
use only one photon map and store photons each time they
hit a surface whatever the nature of the materials. If the pho-
ton is reflected, the photon is modified to take into account
the BRDF (Bidirectional Reflection Distribution Function)
of the material. We can use importance sampling using this
BRDF as a PDF to choose the reflection direction.

The photon map : Photons are stored at intersections in a
balanced kd-tree [Ben75]. This data structure is separated
from the geometric model. Thus no meshing is needed. We
can handle complex scenes easily. The use of a kd-tree for
storing photons allows a quick search of a certain amount of
photons in the photon map.

2.3. Kernel density estimation

2.3.1. Principles

The kernel density estimation constructs an estimate f̂ of
an unknown density function f from a set of observed data
points X1, ..., Xn:

f̂ (x) =
1

nh

n

∑
i=1

K

(
x−Xi

h

)

with h the bandwidth or smoothing parameter and K a kernel
function [Sil86].

2.3.2. From photon density to radiance

According to the photon propagation algorithm, the proba-
bility p(x) that a photon hits an object at a given point x is:

p(x) =
1

Φn
Li(x)

with n the total number of photons hits, φ the mean value of
photons power, and Li(x) the incident radiance at this point.
Using the definition of kernel density estimation, we obtain
an estimator of the incident radiance Li(x) :

L̂i(x) =
φ
h

n

∑
i=1

K

(
x−Xi

h

)

2.4. Rendering : the radiance estimate

Once the photon map is built, we use its information to eval-
uate the rendering equation. Rays are traced in the scene
from the eye. The radiance is computed at intersection of
rays with the scene according to the rendering equation given
by Kajiya [KH84]:

Lr(x, ~ωr) = Le(x, ~ωr) +
∫

Ω
fr(~ωi, ~ωr)Li(x, ~ωi)(~nx · ~ωi)dωi

Where Le is the surface emitted radiance, Li is the radiance
coming from direction ωi, fr is the BRDF et Ω is the hemi-
sphere of incident directions. The integral term is computed
using a density estimation of the photons around the inter-
section point.

Jensen proposed to use the photon map only to compute
indirect illumination and to use standard ray-tracing tech-
niques to compute direct illumination. We will see in section
3 that we can evaluate illumination directly with the photon
map using our method without degrading the accuracy of the
method.

3. Spectral Photon Mapping

Our goal is to do IR rendering. We want to simulate all IR ef-
fects such as emission from all surfaces, scattering and caus-
tics. We choose to develop a spectral renderer for the three
next reasons:

• In IR, emissivity can change a lot with wavelength. Sur-
face emission depends on Black Body Law, which give
radiance function of temperature and wavelength.

• In gas, absorption and scattering phenomena are strongly
spectral.

• Observations of IR phenomena are done with sensors.
These sensors have a spectral response.

Photon Mapping is a very good technique to simulate
scattering. This method is reliable for visible spectrum. We
thought to adapt this method to spectral IR rendering. A ba-
sic method could be to divide the whole spectrum useful for
the sensor in bands and associate one photon per band. But
this method is very expensive, because we have to compute



path for each photon, keeping in mind that the number of
photons is proportional to the number of wavelength band of
the sensor.

3.1. Spectral photons

We choose to divide the spectrum in bands of different
widths to handle any spectral distribution. This repartition
is done accounting spectral emission, spectral material re-
flection, gas absorption and gas scattering properties. In our
method we define spectral photons that have a weight de-
fined for each band of the sensor. This weight is stored in a
vector. They still have a position and a direction as in classi-
cal method.

Photons emitted from light sources transport a part of the
total spectral power of all light sources. Thus, all bands are
propagated at the same time when the photon is traced into
the geometric model, reducing paths computing time. In fact,
the time used to compute paths is quite the same as in clas-
sical method.

3.2. Russian roulette

Because materials has spectral properties (a reflection coef-
ficient for each band), we have to extend the Russian roulette
method to take into account spectral reflections. The idea is
the same as in the classical method [Jen01], except that we
use average coefficient instead of the unique coefficient used
for mono band rendering. For a given material, we can com-
pute average diffuse and specular reflectanceρd and ρs:

ρd =
1

∆L

∫

∆L
ρdl dl

ρs =
1

∆L

∫

∆L
ρsl dl

where ∆L is the sum of bands widths.

We use these values for Russian roulette. Given a random
number ξ between 0 and 1 :

• if ξ ∈ [0,ρd ] then diffuse reflection.
• if ξ ∈]ρd ,ρd + ρs] then specular reflection.
• if ξ ∈]ρd + ρs,1] then absorption.

To account the fact that the reflection should have used a
spectral reflectance value, we need to scale the power of the
reflected photon. For choosing the reflection case, we used a
PDF defined for each band b by :

• For a diffuse reflection : PDFd(b) = ρd .
• For a specular reflection : PDFs(b) = ρs.

Thus, photon weight needs to be modified to take into
account importance sampling using the precedent PDF. For
diffuse reflection and for each band b we have:

Φr,b = Φi,b
ρd,b

PDFd(b)

where Φi,b is the weight of the incident photon for band b
and Φr,b is the weight of the reflected photon.

3.3. Spectral radiance estimate

Rendering is quite similar to classical Photon Mapping ren-
dering. Actually, we trace rays from the eye into the model.
These rays gather spectral radiance at their intersection with
the scene in the model. The radiance is given by density esti-
mation of the photon map. All radiance bands are computed
simultaneously using vectors. For a given band b, we have :

Lr,b(x, ~ωr) =

∫

Ω
fr,b(~ωi, ~ωr)Li,b(x, ~ωi)(~nx · ~ωi)dωi

where Lr,b is the reflected radiance for band b at x in direc-
tion ~ωr. Ω is the hemisphere of incoming direction at point
x, fr,b is the BRDF at x for band b and Li,b the incoming ra-
diance for band b. The photon map contains informations on
the flux. Using the relation between flux and radiance :

Li,b(x, ~ωi) =
d2Φi,b(x, ~ωi)

(~nx · ~ωi)d~ωidAi

The radiance equation becomes :

Lr,b(x, ~ωr) =
∫

Ω
fr,b(~ωi, ~ωr)

d2Φi,b(x, ~ωi)

dAi

The incoming flux Φi,b is approximated using the photon
map by locating the n nearest photons to x. We have:

Lr,b(x,~ω)≈
n

∑
p=1

fr,b(x, ~ωp,~ω)
∆Φp,b(x, ~ωp)

∆A

where ∆Φp,b is the power of the photon p for band b, and ∆A
is the surface where we found the n photons used to estimate
the radiance.

4. Low memory multi-pass method

Our spectral method could use large amounts of memory if
we use a lot of wavelengths. Furthermore, while in IR all sur-
faces are emissive, photons emission positions are spread on
all surfaces of the model. Thus, photon impacts are spread
too on all surfaces of the model, generating a lot of noise. In
particular, for specular materials, we need to use an impor-
tant number of photons in the specular cone to have an accu-
rate density estimation. Raising the number of photons in the
photon map needs lots of memory. It is quite impossible to
match sufficient accuracy because of memory requirements
of the classical photon mapping method. Figure 1 shows a
comparison between the rendering of an emissive and spec-
ular tube with few photons (left) and enough photons (right).

We need to throw a huge number of photons to reduce
noise. But we haven’t unlimited memory on our computers.



Figure 1: Rendering of an emissive and specular tube with
one million photons (left) and approximatively one hundred
million photons in the photon map(right).

So, we thought of an extension of the method. We propose
a multi-pass method which prevents to use lots of memory,
and provides a very good accuracy.

4.1. Basic idea

Photon Mapping is based on density estimation. Thus, accu-
racy of the results raises with the number of samples (pho-
tons) used. While we want a great accuracy, we need to store
a high number of photons. We have to find a strategy to raise
the number of photons without consuming memory. The first
idea to do so is to cache the photon map on disk. But then
we have to take into account the save and load times from
the disk. Actually, for each radiance estimate, we need to
load all parts of the photon map, which cost a lot in terms of
disk access.

So we choose to use little photon maps which fit the mem-
ory to compute temporary radiance instead of caching the
photon map. This radiance is stored in an image, which is
easier to cache than a big photon map.

4.2. Using little photon maps

Larsen and Christensen [LC03] showed that computing in-
direct illumination using several little photon maps is faster
than computing with only one. A photon map is generated
using many random choices. This is done using a pseudo-
random numbers generator. Thus we thought about generat-
ing several photon maps using several distinct seeds and use
them one after the other to reduce noise in the image.

In fact, we construct one little photon map per pass us-
ing a seed for the random numbers generator. Then, this
photon map is used to render a temporary image. This im-
age presents a strong noise because it was generated using
a low precision photon map. We choose to compute little
photon maps because they are faster to compute than huge
photon maps and because the search of photons is faster in
little photon maps. Using a balanced kd-tree to represent the
photon map guarantees that search time for M photons in a
N photons photon map is O(M log2(N)). The smaller is N,

the smaller is search time. Furthermore, little photon maps
always fit in memory.

4.3. Final image reconstruction

We assume that an image corresponds to a set of sample
points which are the same in each pass. Actually, a pixel of
the image defines a unique ray from the eye, and thus defines
a unique intersection point in the scene. So, we don’t need
to recompute the points where radiance is computed from
one pass to another. We saw that the radiance in this point is
given by:

Lr,b(x,~ω)≈
nr

∑
p=1

fr,b(x, ~ωp,~ω)
∆Φp,b(x, ~ωp)

∆A

where nr is the number of photons used for density esti-
mation.

Assuming that light power for band b, Φb, is divided
equally among all the photons, we have:

∆Φp,b(x, ~ωp) =
Φb

Nt

where Nt is the total number of photons in the Photon
Map.

Combining with radiance expression gives:

Lr,b(x,~ω)≈
nr

∑
p=1

fr,b(x, ~ωp,~ω)
Φb

Nt∆A

Assuming that an integer m exists such as :

Nt = mN

and assuming that :

nr = mn

Then we have :

Lr,b(x,~ω)≈
nṁ

∑
p=1

fr,b(x, ~ωp,~ω)
Φb

Nm∆A

We can cut the sum in m terms :

Lr,b(x,~ω) ≈
[ n

∑
p=1

fr,b(x, ~ωp,~ω)
Φb

Nm∆A

+
2n

∑
p=n

fr,b(x, ~ωp,~ω)
Φb

Nm∆A

+ . . .

+
nm

∑
p=n(m−1)

fr,b(x, ~ωp,~ω)
Φb

Nm∆A

]

We do a variable change for each sum and we assume



that for each sum, photons ~ωpi are in photon map i and that
photon maps are distinct. Then we have:

Lr,b(x,~ω) ≈
[ n

∑
p1=1

fr,b(x, ~ωp1 ,~ω)
Φb

Nm∆A

+
n

∑
p2=1

fr,b(x, ~ωp2 ,~ω)
Φb

Nm∆A

+ . . .

+
n

∑
pm=1

fr,b(x, ~ωpm ,~ω)
Φb

Nm∆A

]

We can write this as a sum:

Lr,b(x,~ω)≈
m

∑
i=1

n

∑
pi=1

fr,b(x, ~ωpi ,~ω)
Φb

Nm∆A

We factorize:

Lr,b(x,~ω)≈ 1
m

m

∑
i=1

n

∑
pi=1

fr,b(x, ~ωpi ,~ω)
Φb

N∆A

The term ∑n
pi=1 fr,b(x, ~ωpi ,~ω) Φb

N∆A is a density estimation
searching n photons in a photon map with N photons.

The equation shows that computing the radiance with m
little photon maps of N photons using n photons for den-
sity estimation then computing a mean value is the same as
computing radiance with one big photon map of Nt using nr

photons for density estimation.

Using little photon maps avoids to cache the photon map
on the disk, and so avoids disk access time. We choose to
compute this photon maps one after the other in a multi-pass
method. In fact, each new pass corresponds to a raise of the
number of photons used for density estimation.

While we use a multi-pass method, we can see the evolu-
tion of the image and stop the simulation when the accuracy
is sufficient. This could be automated by measuring the dif-
ference between the last two pass results.

Many Photon Mapping algorithms compute only indirect
illumination using photon maps. Actually, we need a lot of
photons to compute direct illumination by density estima-
tion without noise. While we can use as many photons as
we need with our method, we choose to compute all kind of
illumination using density estimation.

5. Results

5.1. System

We used the software SPECRAY from OKTAL Synthetic
Environment on an Athlon 2.4 GHz with 512 Mo running
Linux to obtain all results.

5.2. Tests

An emissive specular ring lies on a totally diffuse planar sur-
face. A point light is added that generates caustics in the
ring. This scene isn’t closed, so we need to throw more pho-
tons than we want to store because we lost a lot of photons
in the atmosphere. That’s why we need to throw approxima-
tively 30,000,000 photons to store 3,000,000 photons. We
have faster computing time in closed scenes because we need
to throw less photons.

Figure 2 presents time results for rendering the scene
shown in figure 3 and 4. Figure 3 shows two images, one
computed with a photon map of 3,000,000 photons using
600 photons for density estimation, the other with 30 passes
computing photon maps of 100,000 photons using 50 pho-
tons for density estimation.

Figure 4 shows IR images rendered at different step of
computing. We used photon maps of three million photons
and 500 photons for density estimation to render this images
because it’s the maximum our system can handle.

Figure 2: Computing, sorting, rendering and total times (s)
for 3,000,000 photons using different numbers of passes (1 to
60). For m passes, each photon map contains 3,000,000/m
photons, and we search 600/m photons for density estima-
tion. The original size of images is 256x256 pixels.

5.3. Discussion

In section 4.3, we showed that computing radiance using a
photon map of Nt photons using nr photon for density esti-
mation gives the same results as computing the mean value
of m evaluations using a photon map of N photons using n
photons for density estimation assuming that Nt = mN and
nr = mn. Figure 2 shows that computing times for one big
photon map or m little photon maps are equal. Sorting time
decreases with the number of photons in the photon map.
Rendering time for one photon map decreases with the num-
ber of photons in the photon map and with the number of



Left Right

Pixel mean value 1.39736 1.39929

Pixel standard deviation 1.19078 1.19402

Figure 3: IR renderings with one (left) and thirty (right)
passes.

Figure 4: Several steps IR images. All passes are done us-
ing three million photons. From left-up image to right-down
image, respectively 1, 5, 20 and 250 passes were used. 500
photons were used for radiance evaluation.

photons used for density estimation. Nethertheless rendering
time for m photon map increases when the time saved using
little photon maps becomes smaller than the time needed to
update the image. Our method rendering is faster than clas-
sical method for a judicious number of passes. For example,
the best is to use five passes for this scene. This parameter
change for others scene.

The two images from figure 3 have the same variance. In
fact, the only difference is that the photons used for density

estimation are not the same, because we use random sam-
pling for photon map generation.

Figure 4 shows that rendering quality for 3 million pho-
tons is far from good. Much noise is visible in the left-up
image. Quality increases fastly when we add a few pass. We
saw that this quality raises slowly with a great number of
pass. This come from the fact that we do a mean image. We
have to double the number of passes to divide noise by two.

6. Conclusion

We showed how it is possible to adapt Photon Mapping to a
spectral rendering without consuming extra memory while
keeping a very good accuracy. Taking into account spec-
tral emission and reflections permitted us to do accurate
IR rendering. Our multi-pass method is faster than classi-
cal method when photon map fits entirely in memory. We
can use an unlimited number of photons. We avoid prob-
lems due to photon map caching such as swapping and
cache defaults. Thus our method can match very accurate
results. This is very interesting for IR rendering, while we
can through enough photons to have the noise disappeared.

7. Coming soon...

While we use a Photon Mapping method, we keep all ad-
vantages of the method. So far, we have not implemented all
functionalities of Photon Mapping such as filtering in an-
gles and use visual importance [KW00, PP98]... Thus we
will have to upgrade our spectral Photon Mapping to have
all possible advantages.

While we use a multi pass method, we could optimize
convergence time by a better construction of the photon map.
Actually, the photon map of a pass could be analyzed and
give importance information useful to lead the construction
of the next pass photon map. Our method is already faster
and more accurate than classical method and could be opti-
mized easily.

In classical method, we use a kd-tree to store photons. It
provides an interesting compromise between search time and
memory consumption. While we are not limited by memory,
we could use another data structure which provides better
search time than a kd-tree.
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