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Abstract

The density estimation methods are known to be among
the most promising for providing realistic images from 3D
scenes. However, in most of these methods, the direct illumi-
nation is computed using a raytracing pass which samples
each light source. This involves a limitation on the num-
ber of light sources that can be handled. This limitation can
be removed using a direct estimation of radiance using the
particle map. Nevertheless, in this case we would need to
store a huge number of particles in order to have a sufficient
density in the particle map, which involves a limitation on
memory consumption. In this paper we propose a new tech-
nique called ”multi-pass density estimation” which is inde-
pendent of the scene complexity and which maintains the
memory consumption constant independently of the number
of particles used for density estimation, and hence, removes
the limitation on their number. This method has been devel-
opped in the context of infrared rendering where any sur-
face or participating medium is emissive and where the ab-
sorption and scattering phenomena are strongly spectral.
Therefore we had to adapt a band model to the density es-
timation method in order to handle spectral complexity. To
reduce memory usage, we make a partition of the big par-
ticle map in parts of a given size. Each particle map pro-
vides a density estimation. We finally take the average value
of these estimations. We also demonstrate the efficiency of
our method in the visible spectrum, which is in fact a sim-
plified application of our technique.

1. Introduction

A lot of work has been done on realistic rendering. For
the majority of existing techniques, it is difficult to handle
scenes with a huge number of extended light sources. As
our goal is to do infrared rendering, we do have to handle
all surfaces of the scene as extended light sources. In most
of the existing density estimation techniques, a raytracing
pass is used for direct lighting computations and density
estimation is only used for indirect illumination computa-

tion. In the case of infrared rendering, the raytracing pass
cannot be handled because it is prohibitive to sample effi-
ciently all the sources (all the surfaces) of the scene. Thus
we chose to compute the whole illumination using density
estimation. But it appeared that we needed a huge number
of particles to handle direct illumination correctly and this
number can’t be stored in nowadays computer memory.

Our research to solve infrared simulation problems leds
us to a multi-pass density estimation method which allows
us to render 3D scenes containing a lot of light sources with-
out increasing the memory consumption. Actually, render-
ing visible scenes is a simplified application of our infrared
approach which can handle all surfaces and participating
media as light sources. The memory consumption of the
method is independent of the scene complexity and of the
number of particles used to render the final image.

Firstly, we present the problems which has to be solved
for infrared rendering. Secondly, an overview of global illu-
mination techniques explains our choice to improve the den-
sity estimation method for infrared rendering. Then we ex-
pose our spectral method, the memory limitation that arises
and the approach we found to overcome this problem. Fi-
nally, we test our method and discuss the results.

2. Infrared constraints

Nowadays, infrared sensors enable a lot of thermal phe-
nomena to be analyzed such as detecting hot points in en-
gines, detecting isolation problems in a house, night obser-
vation, etc. We want to simulate these phenomena to make
the engineers’ work easier. For example, if we can simu-
late an engine before it has been built, we can predict a lot
of design failure and so save a lot of time and money. The
three major differences between infrared and visible spec-
trum are described below.

First of all, for wavelength in the visible spectrum, only
very hot materials are emissive (light sources), whereas for
infrared spectrum, every object can be a light source be-
cause emissivity is more sensitive to temperature for these
wavelengths. The emitted radiance of a material is mod-
elized by the Planck’s Black Body Law. This law gives the



emitted radiance in function of the wavelength and the tem-
perature. Figure 1 presents the Planck’s law. For instance, a
table at 293 Kelvin emits at infrared wavelength and not at
visible ones.

Figure 1. Planck’s Black Body Law. Each
curve gives the intensity emitted by a black
body in function of wavelenght for a given
temperature.

Secondly, infrared spectral value can change quickly
with the wavelength due to absorption phenomena.

Finally, participating media cannot be neglected in in-
frared rendering. Actually, absorption and scattering phe-
nomena are strongly spectral for infrared wavelengths. Fur-
thermore, gases in a scene are most of the time at ambient
temperature, thus these gases are emissive.

Consequently, we need a method that can handle all sur-
faces and participating media as light sources and that can
deal with the spectral complexity of infrared phenomena.

3. Background

A lot of visible rendering methods already exist. Let us
see if one of them could help us in our aim. We thought
about global illumination rendering techniques because we
need physical and accurate results.

3.1. Radiosity

Among all global illumination methods, radiosity is the
first. It offers good computation times for simple scenes (i.e.
lambertian surfaces and simple geometry). Nevertheless the
cost of this method becomes prohibitive for complex scenes.
Simple information about radiosity can be found in [20]. A
lot of work has been done in order to reduce the complex-
ity of radiosity algorithm such as hierarchical radiosity [2]
and clustering [7]. However, the complexity problem is not

completly solved using these methods. As we want to ren-
der very complex scenes (materials and geometry) with a
great physical accuracy, we thought about Monte Carlo ray
tracing techniques.

3.2. Monte Carlo Ray Tracing techniques

These methods use point sampling to estimate the illumi-
nation in a model. A point sample consists in tracing a ray
through the scene and computing the radiance in the direc-
tion of this ray. In Monte Carlo Path Tracing [10], rays are
sent out from the virtual eye point through a pixel, whereas
in Monte Carlo Light Tracing [3] rays are traced from the
light sources. Therefore the random walks are independent
of the pixels. Instead of considering each pixel at a time, all
pixels can be treated at the same time. Many improvements
of these methods have been proposed such as stratified and
importance sampling. So far, for a complete overview of
these improvements, see [18, 11, 4, 22]. These techniques
have several advantages. Any kind of geometry with any
kind of material can be handled without tessellation. Ray
tracing is the best way for specular reflections. The accu-
racy is controlled at the pixel level using the variance and
these methods are unbiased. Unfortunately these methods
have a slow convergence because all possible paths have to
be traced for rendering. Bidirectional Path Tracing [12, 23]
combines path and light tracing. Paths are traced starting
from both the eye and the light sources. The idea is to ex-
ploit the fact that certain paths are most easily sampled from
the eye whereas other paths can be sampled better by start-
ing at the light. This method takes into account all possi-
ble paths, and caustic paths in particular. But the problem
of this technique is the noise. Actually, the cost to reduce
the noise is very expensive, particularly when dealing with
mirror reflections for which Path Tracing is a better solu-
tion.

3.3. Particle Tracing and Density Estimation
methods

The computation of global illumination using density es-
timation provides the same advantages as Monte Carlo ray
tracing techniques. Furthermore, the technique is consis-
tent, which means that it converges to the correct solution
as more points/particles are used. This method is performed
in two passes. First, the flux is propagated from the light
sources in the scene using particle tracing and stored into
the particle map. Then a density estimation [21, 15, 19, 24]
is used to estimate the radiance from the flux information
stored in the particle map. Estimation points are found us-
ing a simple ray tracing from the eye into the model. Jensen
[9] proposed using density estimation only for computing
indirect illumination. Direct illumination is computed using



a Monte Carlo ray-tracing pass. For each intersection point,
a ray is traced towards each source. However, the number
of rays to be traced becomes prohibitive for a large number
of light sources. On the other hand, if we compute both di-
rect and indirect illumination using a density estimation, the
memory consumption becomes prohibitive because a high
density of particles has to be present in the map in order
to reduce noise, and hence, a large mass of data has to be
stored. Thus memory is limiting the accuracy of direct esti-
mation.

Consequently, density estimation appears to be the
most interesting technique for physical rendering. But
some problems remain. The next section presents our den-
sity estimation approach for spectral infrared rendering and
shows that it increases memory consumption. Then sec-
tion 5 presents our solution to free us from the memory
limitation.

4. Spectral density estimation

4.1. Spectral model

The origin of our work was to improve the spectral
ray tracing software SPECRAY provided by OKTAL SE.
Therefore, we had to use its spectral band model to rep-
resent the spectrum. It consists in cutting the wavelength
domain in little segments called bands. For each band, the
spectrum value is defined for each bound of the band. The
value for the band can be constant or linearly varying be-
tween the bound values. Then we have an approximation of
the spectrum (piecewise constant or linear). Any kind of in-
frared spectrum can be handled by this model. Even absorp-
tion rays can be represented using very narrow bands.

Much work has already been done on spectral models
[8, 17, 1] but optimizing the representation of the spectrum
is not the point of this article. Furthermore, these models
are only used for visible simulation, and hence, take into
account the human vision system and the human perception
which is pointless for infrared rendering. An efficient spec-
tral model is the k-distribution model. For more information
see [6]. But, in any case, the memory problems would have
been the same even if we had chosen to use one more effi-
cient spectral model.

4.2. Spectral particles

In [9], a particle is a data structure containing a posi-
tion, a direction, and RGB values of the light flux. Simi-
larly, we use particles containing a position, a direction and
a spectral flux represented by an array of values. Each ele-
ment of the array corresponds to a band of the approximated
spectrum. We could have used one particle per band but we
would need a great number of bands to accurately represent

the spectrum. For example, we need at least 10000 bands for
certain sort of gas. In this case, if we have one band per par-
ticle, we have to compute a huge number of particle paths,
and we have to store a huge number of positions and direc-
tions (particles). As the complexity of sorting the particle
map and searching particles raises with the number of parti-
cles in the map, we choose to reduce the number of particles
stored by transporting a whole spectrum per particles. Fur-
thermore, Larsen and Christensen showed, for a different
aim, that using multiple small particle maps is faster than
using one big particle map [13].

4.3. Spectral reflections

Materials have spectral properties. These properties are
described using the same bands as the spectrum of the par-
ticle. The particle tracing pass uses the Russian roulette
method as in [9] whereas it must be adapted to spectral ren-
dering. We use an average coefficient instead of the unique
coefficient used for mono band rendering. For a given ma-
terial, we can compute average diffuse and specular re-
flectance ρd and ρs:

ρd =
1

∆Λ

∫

∆Λ

ρdλ
dλ

ρs =
1

∆Λ

∫

∆Λ

ρsλ
dλ

where ∆Λ is the sum of bands widths.
These values are used in the Russian roulette. Given a

random number ξ between 0 and 1 :

• if ξ ∈ [0, ρd] then diffuse reflection.

• if ξ ∈]ρd, ρd + ρs] then specular reflection.

• if ξ ∈]ρd + ρs, 1] then absorption.

To account for the fact that the reflection type should
have been chosen using a spectral reflectance value, we
need to scale the spectral power of the reflected particle ac-
cording to the chosen case. In fact, the choice of the reflec-
tion case uses a probability density function (PDF) [5] de-
fined for each band ∆λ by :

• For a diffuse reflection : PDFd(∆λ) = ρd.

• For a specular reflection : PDFs(∆λ) = ρs.

Thus, particle weights need to be modified to take into
account importance sampling using the precedent PDF. For
diffuse reflection and for each band ∆λ we have:

Φr,∆λ = Φi,∆λ

ρd,∆λ

PDFd(∆λ)

where Φi,∆λ is the power of the incident particle for band
∆λ and Φr,∆λ is the power of the reflected particle.



4.4. Spectral radiance estimate

Our rendering method differs a little from classical den-
sity estimation methods. Rays are traced from the eye into
the model. These rays gather spectral radiance at their inter-
section with the scene in the model. We cannot use the op-
timization that consist to trace a random ray to each light
source to compute direct illumination because all surfaces
of the model are light sources. If we do so, we have to trace
rays in all directions, which is prohibitive. Thus, the radi-
ance is directly given by the density estimation of the par-
ticle map at the first intersection point of the ray with the
model. This implies having a sufficient density of particles
in the map. All radiance bands are simultaneously computed
using arrays. For a given band ∆λ, we have adapted the ren-
dering equation :

Lr,∆λ(x, ~ωr) =

∫

Ω

fr,∆λ( ~ωi, ~ωr)Li,∆λ(x, ~ωi)( ~nx · ~ωi)dωi

where Lr,∆λ is the reflected radiance for band ∆λ at x in
direction ~ωr. Ω is the hemisphere of incoming direction at
point x, fr,∆λ is the BRDF (Bidirectional Reflection Dis-
tribution Function) [16] at x for band ∆λ and Li,∆λ the in-
coming radiance for band ∆λ. The particle map contains in-
formation on the flux. Then using the relation between flux
and radiance :

Li,∆λ(x, ~ωi) =
d2Φi,∆λ(x, ~ωi)

( ~nx · ~ωi)d~ωidAi

The radiance equation becomes :

Lr,∆λ(x, ~ωr) =

∫

Ω

fr,∆λ( ~ωi, ~ωr)
d2Φi,∆λ(x, ~ωi)

dAi

The incoming flux Φi,∆λ is approximated using the par-
ticle map by locating the n nearest particles to x. We have:

Lr,∆λ(x, ~ω) ≈
n

∑

p=1

fr,∆λ(x, ~ωp, ~ω)
∆Φp,∆λ(x, ~ωp)

∆A

where ∆Φp,∆λ is the power of the particle p for band ∆λ,
and ∆A is the area of the surface where we found the n par-
ticles used to estimate the radiance.

4.5. Problems due to spectral density estimation
for infrared rendering

4.5.1. Specular noise After making a few tests, some
problems appear. Figure 2 is the infrared rendering of a tube
with a specular and emissive material using one million par-
ticles. The tube is the only light source in the scene. The im-
age is noisy because there are not enough particles to esti-
mate radiance for specular materials. Actually, when the ra-
diance is estimated, the power of the particles is multiplied

by the BRDF value. As a consequence, a particle with its di-
rection in the specular cone is more important than a parti-
cle with its direction in the diffuse part of the BRDF. The
probability to have particles in the specular cone depends
on its width and on the particle density around the sam-
ple point. Since we cannot change the material properties,
our only choice is to raise particle density. Thus we have to
trace and store more particles. Figure 3 illustrates the spec-
ular problem.

Figure 2. Rendering of an emissive and spec-
ular tube using one million particles.

(a) (b)

Figure 3. Estimation problem for specular
materials. (a): no particle has its direction in
the specular cone. (b): particles in bold are in
the specular cone.

4.5.2. Memory cost Therefore, storing more particles has
a cost. Let us count the size of a spectral particle. First, the
position and the direction are stored using 6 double. Then
each band power is stored using 1 double. Thus if we have
only one band, the particle size is 7 double or 54 bytes. This



means that we need 54 megabytes to store 1 million parti-
cles. But these results are only for one band. If the number
of bands is 100 then we need 848 bytes per particle, then
for 1 million particles we need 848 megabytes. This is pro-
hibitive for the majority of the computers. Hence, we have
to find a solution to raise the number of particles for den-
sity estimation without using so much memory. Of course,
if we use float instead of double, we can divide the memory
consumption by two. We can use Ward’s shared-exponent
RGB-format as in [9], but as we need to throw more than
20 million of particles, the memory problem remains.

5. Multi-pass method

5.1. Objectives

As we said in the previous section, our objective is to
find a way to raise the number of particles stored in the par-
ticle map. But if the number of particles and/or the num-
ber of bands is too large, we do not have enough memory
to store the entire particle map. Thus we have to cache the
particle map on the disk. And we want to keep up similar
performances. So our objective is to optimize particle map
cache management.

5.2. Existing technique

Ward et al. proposed Irradiance caching [25] in 1988.
They only use the density estimation to compute indirect il-
lumination. Thus, the idea is to take advantage of the slow
changes in the indirect illumination. They can precompute
irradiance for a certain number of sample points. The num-
ber of points depends of the illumination regularity. Ac-
tually, they use an estimate of the illuminance gradient to
know if the sample points density is sufficient or if they have
to add some points. Then the irradiance is interpolated dur-
ing the rendering. This method is very efficient for a ma-
jority of scenes and could probably be adapted to infrared
rendering. However, there is three type of infrared render-
ing using short (from 1e−6 to 2e−6 meters), medium (from
3e−6 to 5e−6 meters) and long (from 8e−6 to 12e−6 meters)
wavelenghs. Irradiance caching is suited for medium and
long wavelengths because the direct illumination changes
slowly due to the emission of all materials. Nevertheless, in
short wavelength rendering, the direct illumination can be
irregular as in visible spectrum. For this kind of rendering,
we cannot use this method because we compute the whole
illumination using direct density estimation of the particle
map and direct illumination can change quickly then the hy-
pothesis of slow illumination changes isn’t verified. As di-
rect illumination can change quickly, the number of sample
points to use can be very big depending on the scene.

Shirley and Walter [19, 24] proposed a view independent
method by caching the illuminance using a mesh. A parti-
cle tracing phase then a density estimation are used to com-
pute the illumination over the scene mesh. Then a decima-
tion phase is used to produce an illumination mesh where
the illumination can be considered linear over each face of
the mesh. Then the illuminated mesh can be displayed us-
ing standard OpenGL output. As the illuminated mesh de-
pend on the scene complexity and the illumination regular-
ity, this method is dependent on both of them.

For both of these methods, cases exist where these meth-
ods are dependent on the scene complexity and the illumi-
nation regularity . For example, a scene with a huge num-
ber of small and complex objects (typically an engine) may
have a irregular illumination which is a problem for these
methods because they have to raise the number of sample
for irradiance caching and to raise the complexity of the il-
lumination mesh for [19, 24]. As we wanted a method able
to render very complex scenes with irregular illumination
without increasing the complexity of the algorithm, we had
to find another solution.

5.3. Basic idea

Our method has quite a simple principle. As we can-
not store enough particles in memory to match the required
accuracy, we thought about making several density estima-
tions that use particle maps that fit into memory. These den-
sity estimations can be computed one after the other. Nev-
ertheless, this only works if the little particle maps form a
partition of the big particle map we should have used. The
use of a different seed for random choices when comput-
ing each new particle map ensures that we build a partition.

We use a cache to store temporary radiances. This cache
is an array of spectral values that have the same size as the
final image. Each value of the array corresponds to a sample
point. The sample points are the same for each pass as we
compute the same image many times. The size of the cache
is only dependent on the image size. For example, an image
of 1024x768 pixels computed with 100 bands needs a cache
of approximately 630 megabytes, which is less than the par-
ticle map size (as seen is section 4.5.2 848 megabytes for
only 1 million of particles). And we can store in this cache
the equivalent illumination to as many photons as we need.
Thus writing and loading procedures from the disk are faster
than if we had cached the particle map.

Figure 4 presents an example. In fact, the radiance den-
sity estimation at a sample point using 600 particles found
in a particle map of 2 million particles is equal to the mean
value of two density estimations, computed at the same
sample point, using 300 particles found in 2 distinct par-
ticle maps of 1 million particles. The demonstration is pre-



sented in the next section. Figure 5 illustrates the equiva-
lence between one pass and thirty passes.

Figure 4. Example of a density estimation de-
composition in two passes.

Left Right
Number of passes 1 30
Particle map size 3M 100K

Particles for density estimation 600 20
Pixel average value 1.39736 1.39929

Pixel standard deviation 1.19078 1.19402

Figure 5. Illustration of the equivalence be-
tween rendering with one (left) and thirty
(right) passes.

5.4. Final image reconstruction

A pixel of the image defines a unique ray from the eye,
and thus defines a unique intersection point in the scene. We
saw in section 4.4 that the radiance in this sample point is
given by:

Lr,∆λ(x, ~ω) ≈

nr
∑

p=1

fr,∆λ(x, ~ωp, ~ω)
∆Φp,∆λ(x, ~ωp)

∆A

where nr is the number of particles used for density es-
timation.

Assuming that the light power for band ∆λ, Φ∆λ, is di-
vided equally among all the particles, we have:

∆Φp,∆λ(x, ~ωp) =
Φ∆λ

Nt

where Nt is the total number of particles in the particle
Map.

Combining with radiance expression gives:

Lr,∆λ(x, ~ω) ≈

nr
∑

p=1

fr,∆λ(x, ~ωp, ~ω)
Φ∆λ

Nt∆A

Assuming that it exists an integer m such as :

Nt = mN

and assuming that :
nr = mn

Then we have :

Lr,∆λ(x, ~ω) ≈
nṁ
∑

p=1

fr,∆λ(x, ~ωp, ~ω)
Φ∆λ

Nm∆A

We can divide the sum in m terms :

Lr,∆λ(x, ~ω) ≈

[

n
∑

p=1

fr,∆λ(x, ~ωp, ~ω)
Φ∆λ

Nm∆A

+
2n
∑

p=n

fr,∆λ(x, ~ωp, ~ω)
Φ∆λ

Nm∆A

+ . . .

+

nm
∑

p=n(m−1)

fr,∆λ(x, ~ωp, ~ω)
Φ∆λ

Nm∆A

]

We do a variable change for each sum and we assume
that for each sum, particles ~ωpi

are in particle map i and
that particle maps are distinct. Then we have:

Lr,∆λ(x, ~ω) ≈

[

n
∑

p1=1

fr,∆λ(x, ~ωp1
, ~ω)

Φ∆λ

Nm∆A

+

n
∑

p2=1

fr,∆λ(x, ~ωp2
, ~ω)

Φ∆λ

Nm∆A

+ . . .

+
n

∑

pm=1

fr,∆λ(x, ~ωpm
, ~ω)

Φ∆λ

Nm∆A

]

We can write this as a sum:

Lr,∆λ(x, ~ω) ≈
m

∑

i=1

n
∑

pi=1

fr,∆λ(x, ~ωpi
, ~ω)

Φ∆λ

Nm∆A



We factorize:

Lr,∆λ(x, ~ω) ≈
1

m

m
∑

i=1

n
∑

pi=1

fr,∆λ(x, ~ωpi
, ~ω)

Φ∆λ

N∆A

The term
∑n

pi=1 fr,∆λ(x, ~ωpi
, ~ω) Φ∆λ

N∆A
is a density esti-

mation searching n particles in a particle map with N par-
ticles.

The equation shows that computing the radiance with m

little particle maps of N particles using n particles for den-
sity estimation hence computing a mean value is the same as
computing radiance with one big particle map of Nt = N

m

using nr = n
m

particles for density estimation.

5.5. Parallel execution

Our method is ideally suited to take advantage of paral-
lelism. Indeed, passes can be distributed over several cal-
culators. Each calculator asks for a pass to compute. When
the computation of a pass is finished, the calculator adds its
pass to the final image then asks for a new pass if there are
any left.

6. Tests and results

Our method was implemented in the industrialized soft-
ware SPECRAY from OKTAL Synthetic Environment. We
performed the tests on an Athlon 2.4 GHz with 512 Mb run-
ning Linux to obtain all results.

6.1. Specular tube

Figure 6 shows that the rendering of the specular and
emissive tube is totally different from figure 2 when we use
enough particles for density estimation. Indeed, the noise
disappears.

6.2. Infrared Conference room (Soda Hall)

This is a rendering in visible and infrared spectrum of
the Conference Room from the Soda Hall. The scene con-
tains approximatively 170000 triangles. In visible spectrum,
there are 1300 extended light sources, in infrared all the tri-
angles are emissive. Figure 7 shows the infrared and visible
renderings.

The final visible rendering has been done in 200 passes
using a 2 million particle map and searching 200 particles
for each density estimation. The original size of the image
is 1024x768 pixels. The infrared rendering has been done
for three common bands :

• Short wavelength infrared (SWIR) from 1e−6 to 2e−6

meters,

Figure 6. Rendering of an emissive and spec-
ular tube with one hundred million particles.

• Medium wavelength infrared (MWIR) from 3e−6 to
5e−6 meters,

• Long wavelength infrared (LWIR) from 8e−6 to 12e−6

meters.

The rendering has been done in 100 passes using a 1 mil-
lion particles map and searching 100 particles for each den-
sity estimation. The original size of the image is 640x480
pixels.

6.3. Discussion

We compute several little particle maps. All these parti-
cle maps are global in opposition to the localised particle
maps dependent on the geometry of [13] which means that
each particle map stores particles within the entire model.
This ensures that the illumination is spread correctly over
the scene for each pass and thus that density estimations are
correct. We benefit from the speedup of computing multiple
small particle maps shown in [13] without limitation on the
mesh complexity because the particle maps are not depen-
dent on the geometry. Unfortunately, when the image size
is large (i.e 1024x768 pixels), the time saved while comput-
ing and sorting the particle map is lost when rendering due
to the number of density estimations needed. Therefore, it is
more interesting to compute fewer passes with bigger parti-
cle maps when rendering big images. The memory used is
constant from one pass to another.

As we do not make a difference between direct and indi-
rect illumination, the cost to reduce the noise in the gener-
ated image is more important than in [9] for visible scenes
with few lights. However, our method offers better results
for visible scenes with lots of light sources than [9] because
the cost of tracing rays toward the lights becomes very ex-
pensive when the number of light sources becomes impor-



Figure 7. Rendering of the Soda Hall conference room in visible (top left) and infrared spectrum : in
SWIR (top right), MWIR (bottom left) and LWIR (bottom right). In order to have a good contrast, the
infrared image radiance has been spread out beetween minimum and maximum radiances which are
respectively 0-10, 1.2-1.8, 31-37 w.sr−1.m−2

tant, whereas our method is independent of the number of
lights.

The cache we use to store the illumination makes our
method only dependent on the image size, whereas in [25,
19, 24] the cache is dependent on the illumination and scene
complexity. Then our method is more suited to very com-
plex scenes, and [25, 19, 24] are more suited to suited to
simpler ones.

7. Conclusion and future work

We have proposed a multipass extension of the den-
sity estimation methods suited to infrared rendering. Our
method is independent of the scene complexity. Since all
surfaces are sources for infrared light, our method gives

good results for rendering scenes with lots of light sources.
However, we have also discussed that our solution is not
suited to all types of scenes.

First of all evolutions, we should adapt a new spectral
model to our method in order to handle infrared spectrum
representation as easily as visible RGB representation.

At this time, inhomogeneous participating media are
taken into account using an adaptative Ray-marching tech-
nique [9]. But this method is expensive due to participating
media complexity. Thus, we have to improve our method to
make it faster.

Then, we have to find a method to handle view depen-
dent specular reflections in a better way. Maybe we could
estimate directly the density of the particle map plus the
evaluation of a set of secoundary rays distributed accord-



ing to the specular BDRF.
Our method suffers from surestimation at edges of the

model because we have not yet implemented the existing
solutions to that problem [9, 14].

As we use a multipass method, we could optimize con-
vergence time using a better construction of the particle
map. Actually, the particle map of a pass could be analyzed
and give importance information useful to guide the con-
struction of the next pass particle map.

Finally, we use a kd-tree to store particles like in [9].
This provides an interesting compromise between search
time and memory consumption. As we are no longer lim-
ited by the memory, we could use another data structure
which provides better search time than a kd-tree.
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